令和2年度

博士論文

Green synthesis of various medicine analogues containing α-amino acids or dipeptides without racemization or epimerization under the extremely mild conditions

千葉科学大学

大学院薬学研究科

薬学専攻

鄭 昇姫

令和3年2月

List of abbreviations

The following abbreviations are used in this paper.

2D	two-dimensional space
Ala	alanine
AM404	N-(4-hydroxyphenyl)arachidonamide
aq.	aqueous
Asp	aspartic acid
Bn	benzyl
Boc	tert-butoxycarbonyl
br	broad singlet (spectral)
°C	degrees Celsius
Cbz	benzyloxycarbonyl
Cys	cysteine
d	doublet (spectral)
de	diastereomeric excess
DCC	dicyclohexylcarbodiimide
DMSO	dimethylsulfoxide
ee	enantiomeric excess
eq	equivalent
ER	endoplasmic reticulum
ESI	electronspray ionization
Et	ethyl
FDA	the U.S. Food and Drug Administration
Fmoc	9-fluorenylmethyloxycarbonyl
g	gram (s)
Gln	glutamine
Gly	glycine
h	hour (s)
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrum
Hz	hertz
IR	Infrared Spectroscopy
<i>i</i> -Bu	iso-butyl
IR	infrared spetroscopy
J	coupling constant (in NMR)

L	liter (s)
Leu	leucine
Lys	lysine
m	milli, multiplet (spectral)
М	moles per liter
m/z	mass to change ratio (in mass spectrometry)
Me	methyl
Met	methionine
mol	mole (s)
MS	mass spectroscopy
NAPQI	N-acetyl-p-benzoquinone imine
NMR	nuclear magnetic resonance
NSAIDs	nonsteroidal anti-inflammatory drugs
Ph	phenyl
Phe	phenylalanine
Phg	phenylglycine
Pro	proline
q	quartet (spectral)
rt	room temperature
S	singlet (spectral)
Ser	serine
t	triplet (spectral)
<i>t</i> -Bu	<i>tert</i> -butyl
THF	tetrahydrofuran
TLC	thin-layer chromatography
TMS	tetramethylsilane
TOF	time-of-flight
Trp	tryptophan
Tyr	tyrosine
Val	valine
δ	chemical shift in parts per million downfield from tetramethylsilane
μ	micro

Contents

Introduction	1
Chapter 1. Synthesis of acetaminophen analogues containing α-amino acids and fa acid for inhibiting hepatotoxicity	atty 3
Section 1. Preparation of various anilines containing 3-phenylpropionic acid mixed carbonic carboxylic anhydrides under mild conditions	via 4
Section 2. Amidation of α-amino acids and fatty acids via the mixed carbo carboxylic anhydrides and its application to synthesis of acetaminop analogues and AM404 analogues	onic hen 6
Chapter 2. Green synthesis of various medicine analogues containing dipeptides with epimerization under the extremely mild conditions	iout 11
Section 1. Preparation of amidation of Cbz-Phg-OH and Cbz-Phe-Phe-OH via min carbonic carboxylic anhydrides without racemization and epimerizat under extremely mild conditions	xed tion 11
Section 2. Amidation of dipeptides via the mixed carbonic carboxylic anhydrides its application to synthesis of various medicine analogues	and 15
Conclusion	20
Experimental	23
Acknowledgement	62
References	63

Introduction

Medicines are metabolized and these chemical structures are changed after being taken in bodies. The formation of reactive intermediates such as electrophiles and free radicals often induces various toxicities against the bodies. So much research about the reactive metabolites has been done so far. It is important to exclude the by-produced reactive metabolites from pharmaceuticals in the manufacturing stages because they cause a variety of toxicities.¹ Furthermore, various efforts in development of new medicines include reducing the amount of chemical waste, saving energy, and minimizing the amount of used and discharged hazardous substances. Green chemistry is defined as "Technology that designs a process for producing chemical products while minimizing the use and generation of hazardous or environmentally polluting substances".² The United States of America awards the "Green Chemistry Presidential Award" for companies and scientists who have successfully contributed to green chemistry every year. For example, *Eastman* won the Green Chemistry Award for development of the enzyme-based esterification in 2009.³ The methods include milder reaction conditions and less amount of solvents and by-products than conventional synthetic ones.

Here I describe an eco-friendly, economical and convenient synthesis method by synthesizing various medicine analogues capable of suppressing side effects through amidation via the corresponding mixed carbonic carboxylic anhydrides (Scheme 1). Although amidation in pharmaceutical synthesis often involves the reaction of active acyl chlorides with amines, acyl chlorides are usually unstable in water and it is necessary to avoid moisture during the reaction. The use of *N*, *N*-dicyclohexylcarbodiimide (DCC) as an alternative condensing agent is not cheap and introduces difficulties with respect to workup. Recently, Szostak demonstrated highly selective transition-metal-free transamidation of amides and amidation of esters in an interesting study.⁴

Our group has recently developed amidations of various *N*-protected α -amino acids with unprotected α -amino acids, NH₄Cl, and aniline derivatives via the mixed carbonic carboxylic anhydrides to provide the corresponding dipeptides, primary amide, and anilides in excellent yield.⁵ In these reports, our group has showed that primary amines and ammonia work as an active nucleophile on the reaction of mixed carbonic carboxylic anhydrides in aqueous organic solvent. Aniline derivatives are less active than ammonia as a nucleophile, so it is very exciting to examine the reactivity of aniline derivatives on the reaction of mixed carboxylic acrboxylic anhydrides in aqueous organic solvent.⁶ Although amidation via activated carboxylic acid is generally carried out under anhydrous conditions, it is very unique that the reaction of activated carboxylic anhydride proceeds smoothly in an aqueous organic solvent to obtain the corresponding amide. In addition, the two activators (ClCO₂Et and Et₃N) are very inexpensive and the by-products obtained in an efficient way are triethylamine hydrochloride, carbon dioxide and the corresponding alcohols, which are very environmentally safe.

Herein, I describe eco-friendly, economical, and convenient synthesis of various medicine analogues containing α -amino acids or dipeptides without racemization or epimerization using amidation via

corresponding mixed carbonic carboxylic anhydrides under the extremely mild conditions. The following two contents are presented: (I) Synthesis of acetaminophen analogues containing α -amino acids and fatty acids for inhibiting hepatotoxicity,^{7a,7e} (II) Green synthesis of various medicine analogues containing dipeptides without epimerization under the extremely mild conditions.^{7d,7g}

Scheme 1. Convenient synthesis of various medicine analogues via mixed carbonic carboxylic anhydrides

Chapter 1. Synthesis of acetaminophen analogues containing α-amino acids and fatty acids for inhibiting hepatotoxicity

Acetaminophen is a popular antipyretic analgesic medicine that has a weaker anti-inflammatory properties and lower incidence of side effects than nonsteroidal anti-inflammatory drugs (NSAIDs). However, it is well known that acetaminophen causes severe hepatotoxicity due to the reactive metabolite *N*-acetyl-*p*-benzoquinone imine (NAPQI) upon overdose. Recently, the U.S. Food and Drug Administration (FDA) has reduced the maximum recommended daily dose of acetaminophen from 4000 to 3000 mg to avoid Stevenson Johnson syndrome and hepatotoxicity, and recommends reducing the dose of acetaminophen to 325 mg.

In a possible metabolic pathway, acetaminophen is converted into the corresponding sulfate or glucuronate at the usual dosage and excreted without producing NAPQI as a reactive metabolite. However, the metabolic process is saturated in the case of overdose and the oxidative metabolism by cytochrome P-450 proceeds to afford the reactive NAPQI. Although NAPQI is detoxified by glutathione stored in the liver, it depletes the liver-derived glutathione upon acute overdose. As the result, NAPQI accumulates, binds to intracellular macromolecules, and causes hepatocellular necrosis.⁸ Furthermore, Zygmunt et al. have recently reported that the physiological action of acetaminophen is very similar to that of *N*-(4-hydroxyphenyl)arachidonamide (AM404) (Figure 1).⁹ AM404 has a strong agonistic action in TRPV₁, which is an ion channel, and affects the cannabinoid CB₁ receptor. These receptors are also involved with pain and thermoregulatory systems and have received considerable attention as analgesic and anti-inflammatory therapeutic targets in recent years.¹⁰ Therefore, acetaminophen analogues of various fatty acids are quite interesting as AM404 analogues.

Figure 1

Herein, I describe in detail the synthesis of various acetaminophen analogues via the corresponding carbonic carboxylic anhydride (Scheme 2). The acetyl group of acetaminophen was replaced with bulkier α -amino acid to construct a derivative of NAPQI that is less susceptible to nucleophilic attack by intracellular macromolecules. I have also prepared AM404 analogues containing fatty acids (Scheme 3).

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ P \\ \mathbf{5} \end{array} \xrightarrow{\text{CICO}_{2}\text{Et, Et}_{3}\text{N}} \\ R^{2} \\ R^{2} \\ \mathbf{N} \\ \mathbf{0} \end{array} \xrightarrow{\text{CICO}_{2}\text{Et, Et}_{3}\text{N}} \\ R^{2} \\ R^{2} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{0} \end{array} \xrightarrow{\text{CICO}_{2}\text{Et, Et}_{3}\text{N}} \\ R^{2} \\ R^{2} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{0} \\ \mathbf{0}$$

P = Cbz, Boc, Fmoc

Scheme 2. Synthesis of acetaminophen analogues 6 containing α-amino acid 5

$$R^{4} \overset{O}{\underset{MeCN}{\leftarrow}} \xrightarrow{CICO_{2}Et, Et_{3}N} \left[\begin{array}{c} 0 & 0 \\ R^{4} & 0 \\ \end{array} \right] \xrightarrow{R^{3}} \xrightarrow{2} \\ MeCN-H_{2}O \\ MeCN-H_{2}O \\ \end{array} \xrightarrow{R^{4}} \xrightarrow{0} \\ H \\ R^{3} \\ R^{4} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{4} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{4} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{4} \\ R^{3} \\ R^{$$

Scheme 3. Synthesis of AM404 analogues 8,9 containing fatty acid 7

Section 1. Preparation of various anilides containing 3-phenylpropionic acid via mixed carbonic carboxylic anhydrides under mild conditions

In a preliminary investigation, the reaction of 3-phenylpropionic acid (1) with 1.1 equivalents of 4-chloroaniline (2a) in the presence of 1.4 equivalents of $ClCO_2Et$ and 1.1 equivalents of Et_3N in aqueous tetrahydrofuran (THF) afforded *N*-(4-chlorophenyl)-3-phenylpropanamide (3a) in 57% yield along with the by-product 4a of 34% yield based on 2a as indicated in entry 1 of Table 1. Effect of the quantity of 2a, ethyl chloroformate, triethylamine on the amidation of 1 in aqueous THF at 0 °C for 1.5 h was examined, and the results are collected in Table 1. The best result (88% yield, entry 3) among them was obtained using 1.1 equivalents of 2a, 1.1 equivalents of $ClCO_2Et$, and 1.1 equivalents of Et_3N .

Next, effect of solvent on the amidation of **1** at 0 $^{\circ}$ C for 24 h was checked, and the results are summarized in Table 2. The reactions of **1** in aqueous THF, 1,4-dioxane, acetone, MeCN, EtOH, or MeOH afforded the corresponding primary amide **3a** in 92%, 19%, 89%, 96%, 50%, and 13% yields, respectively. The best yield (96%) was obtained when the reaction was carried out in aqueous MeCN.

The reactions of **1** with various anilines **2a-r** were then carried out; the results are collected in Table 3. Acid **1** reacted with anilines **2a-f** and **2h-j**, containing an electron-withdrawing group, to produce the corresponding amides **3a-f** and **3h-j** in yields of 30-98% as described in entries 1-6 and 8-10. Unfortunately, the reaction of **1** with 2,4-dinitroaniline **2g** (entry 7) did not afford the corresponding amide **3g** at all and the starting material **2g** was recovered. Acid **1** reacted readily with aniline (**2k**) to yield the amide **3k** in 94%, as shown in entry 11. The reactions of **1** with the anilines **2l-r**, containing an electron-donating group, proceeded smoothly to give the corresponding anilines **3l-r** in high yields of 75-98% (entries 12-18).

Table	1. Effect of	of the quantity	of 4-chloroaniline	2a , ethyl	l chloroformate,	triethylamine	on the	amidation	of
3-phe	nylpropano	bic acid 1^{a}							

O Ph	OH $\frac{1) \operatorname{CICO}_2 \operatorname{E}}{2) \operatorname{CI}_2}$	Lt, Et ₃ N, THF, 0 °C, 30 m -NH ₂ , THF-H ₂ O, 0 °	in ℃, 1.5 h	O Ph [↓] N-√→−Cl	+ EtO ^L N-CI
1	2	a		3 a	4 a
Entry	Et ₃ N (equiv)	ClCO ₂ Et (equiv)	2a (equiv)	Yield of $3a (\%)^{b}$	Yield of $4a (\%)^{b}$
1	1.1	1.4	1.1	57	34
2	1.5	1.1	1.1	83	2
3	1.1	1.1	1.1	88	13
4	1.1	1.05	1.1	77	9
5	1.1	1.05	1.05	74	11
6	1.1	1.0	1.05	79	5
7	1.1	1.0	1.0	83	4

^a All reactions were carried out with 1.0 mmol of **1** in 20 mL of THF. After stirring for 30 min at 0 $^{\circ}$ C, 1.5 mL of water and **2a** were added at 0 $^{\circ}$ C to the reaction mixture. ^b Isolated yield.

O Ph ^{≁↓} OH	1) ClCO ₂ Et, Et ₃ N, solvent, 0 °C, 30 min 2) Cl $-$ NH ₂ , aqueous solvent, 0 °C	$\rightarrow PC, 24 h$ Ph $\rightarrow H$ H	CI + EtO ^L N-CI
1	2a	3 a	4 a
Entry	Solvent	Yield of $3a (\%)^b$	Yield of 3a $(\%)^{b}$
1	THF	92	4
2	1,4-dioxane	19	8
3	acetone	89	3
4	MeCN	96	trace
5	EtOH	50	35
6	MeOH	13	70

Table 2. Effect of solvent on the amidation of 3-phenylpropanoic acid **1**^a

^a All reactions were carried out with 1.0 mmol of **1**, 1.1 mmol of Et_3N , and 1.1 mmol of $ClCO_2Et$ in 20 mL of solvent. After stirring for 30 min at 0 °C, 1.5 mL of water and 1.1 mmol of **2a** were added at 0 °C to the reaction mixture. ^b Isolated yield.

Table 3. Reaction of 3-phenylpropanoic acid 1 with aniline derivatives 2^{a}

Entry	R ³	2	3	Yield of $3 (\%)^{b}$	Yield of $4 (\%)^{b}$
1	4-C1	2a	3 a	96	trace
2	4-F	2b	3 b	97	0
3	2,3,4,5,6-F ₅	2c	3c	67	34
4	4-EtO ₂ C	2d	3d	70	0
5	$4-O_2N$	2e	3 e	65	0
6	3,5-(O ₂ N) ₂	2 f	3f	30	0
7	2,4-(O ₂ N) ₂	2g	3g	0	0
8	4-Br	2h	3h	98	2
9	4-I	2i	3i	94	5
10	4-CN	2j	3ј	87	0
11	Н	2k	3k	94	trace
12	4-Me	21	31	95	1
13	4-HO	2m	3m	92	3
14	2-EtO	2n	3n	89	trace
15	4-EtO	20	30	98	2
16	4-SH	2p	3p	92	7
17	4-tert-Bu	2q	3q	96	0
18	2,4,6-Me ₃	2r	3r	75	4

^a All reactions were carried out with 0.5 mmol of **1**, 0.55 mmol of Et₃N, and 0.55 mmol of ClCO₂Et in 10 mL of MeCN. After stirring for 30 min at 0 °C, 0.75 mL of water and **2** were added at 0 °C to the reaction mixture. ^b Isolated yield.

Section 2. Amidation of α -amino acids and fatty acids via mixed carbonic carboxylic anhydrides and its application to synthesis of acetaminophen analogues and AM404 analogues

I also examined the condensation of α -amino acids and fatty acids using 4-aminophenol (**2m**), 2-ethoxyaniline (**2n**), and 4-ethoxyaniline (**2o**) for synthesis of acetaminophen analogues. Table 4 shows the results of the condensation of various N-protected with Cbz, Boc, and Fmoc groups via the corresponding mixed carbonic carboxylic anhydrides, with **2m**, **2n**, and **2o**. The reaction proceeded without racemization (95-99% ee) except for the substrates listed in entries 21-22, and good yield (57-99%) although the yields given in entries 23 and 24 (65% and 57%) were lower due to low solubility in MeCN.

It is presumed that the reduction of the enantioselectivities in the reactions shown in Table 4, entries 21 and 22 is attributable to the weakened reactivity of the corresponding mixed carbonic carboxylic anhydrides by the steric hindrance of the trityl group. The yields were slightly improved in several cases compared with the eluents in order to avoid tailing of the products on silica gel during purification by column chromatography.

	$R^1_{\underline{\times}}$	0 1) ClCO ₂ Et, 1	R1 _C						
	R ² -N	OH 2) R ³	,, , ·	MeCN-I	H ₂ O, 0 °C	C, 24 h	R ² -N N	!-{	
	Р		NH ₂				ΡF	—	R ³
		5	2				6		
Entry	Р	R^1	\mathbb{R}^2	5	R^3	6	Yield (%) ^b	% ee ^c	Retention time (min)
1	Cbz	PhCH ₂ (L)	Н	5aL	4-EtO	6aLo	96	>99	15
2	Cbz	$PhCH_2$ (D)	Н	5aD	4-EtO	6aDo	97	>99	17
3	Cbz	$PhCH_2(L)$	Н	5aL	2-EtO	6aLn	91	>99	26
4	Cbz	$PhCH_2(D)$	Н	5aD	2-EtO	6aDn	91	>99	51
5	Cbz	$PhCH_2(L)$	Н	5aL	4-OH	6aLm	88	>99	26
6	Cbz	$PhCH_{2}(D)$	Н	5aD	4-OH	6aDm	88	>99	30
7	Cbz	Me ₂ CH (L)	Н	5bL	4-EtO	6bLo	97	>99	10
8	Cbz	Me ₂ CH (D)	Н	5bD	4-EtO	6bDo	99	>99	11
9	Cbz	Me (L)	Н	5cL	4-EtO	6cLo	82	>99	14
10	Cbz	Me (D)	Н	5cD	4-EtO	6cDo	91	98	16
11	Cbz	$MeS(CH_2)_2(L)$	Н	5dL	4-EtO	6dLo	85	>99	15
12	Cbz	$MeS(CH_2)_2(D)$	Н	5dD	4-EtO	6dDo	88	>99	20
13	Cbz	$(CH_2)_3(L)$		5eL	4-EtO	6eLo	99	>99 ^d	56
14	Cbz	$(CH_{2})_{3}(D)$		5eD	4-EtO	6eDo	99	>99 ^d	20
15	Boc	$PhCH_2$ (L)	Н	5fL	4-EtO	6fL0	99	>99	13
16	Boc	$PhCH_2(D)$	Н	5fD	4-EtO	6fD0	99	95	8
17	Fmoc	$PhCH_{2}(L)$	Н	5gL	4-EtO	6gLo	82	>99 ^e	29
18	Fmoc	$PhCH_{2}(D)$	Н	5gD	4-EtO	6gDo	95	>99 ^e	11
19	Boc	$C_{6}H_{5}CH_{2}OCH_{2}$ (L)	Н	5hL	4-EtO	6hLo	93	>99 ^f	19
20	Boc	$C_{6}H_{5}CH_{2}OCH_{2}(D)$	Н	5hD	4-EtO	6hDo	95	98^{f}	16
21	Fmoc	Ph ₃ CSCH ₂ (L)	Н	5iL	4-EtO	6iLo	77	79 ^{e,g}	64
22	Fmoc	$Ph_3CSCH_2(D)$	Н	5iD	4-EtO	6iDo	79	86 ^{e,g}	55
23	Cbz	p-HOC ₆ H ₄ CH ₂ (L)	Н	5jL	4-EtO	6jLo	65	>99 ^e	62
24	Cbz	p-HOC ₆ H ₄ CH ₂ (D)	Н	5jD	4-EtO	6jDo	57	>99 ^e	81
25	Cbz	$C_8H_6NCH_2$ (L)	Н	5kL	4-EtO	6kLo	91	>99 ^{d,h}	121
26	Cbz	$C_{8}H_{6}NCH_{2}(L)$	Н	5kD	4-EtO	6kDo	91	>99 ^{d,h}	87
27	Boc	$H_2NCOCH_2CH_2$ (L)	Н	51L	4-EtO	6lLo	79	>99	19
28	Boc	$H_2NCOCH_2CH_2$ (D)	Н	51D	4-EtO	6lDo	80	>99	14
29	Boc	$Cbz-NH(CH_2)_4(L)$	Н	5mL	4-EtO	6mLo	94	>99	37
30	Boc	$Cbz-NH(CH_2)_4(D)$	Н	5mD	4-EtO	6mDo	97	>99	15

Table 4. Synthesis of acetaminophen analogues 6 containing α -amino acid 5^a

^a All reactions were carried out with 0.5 mmol of **1**, 0.55 mmol of Et₃N, and 0.55 mmol of ClCO₂Et in 10 mL of MeCN. After stirring for 30 min at 0 °C, 0.75 mL of water and **2** were added at 0 °C to the reaction mixture. ^b Isolated yield. ^c Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as an eluent using Chiralcel OD (1.0 mL/min). ^d Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as an eluent using Chiralcel AS (1.0 mL/min). ^e Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as an eluent using Chiralcel AS (1.0 mL/min). ^f Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as an eluent using Chiralcel ADH (1.0 mL/min). ^f Determined by HPLC analysis with a 95:5 mixture of hexane and isopropanol as an eluent using Chiralcel ADH (1.0 mL/min). ^g The reactions were carried out at -15 °C. ^h Cbz was deprotected.

^a All reactions were carried out with 1 equiv of fatty acid 7, 1.1 equiv of Et_3N , and 1.1 equiv of $ClCO_2Et$ in MeCN. After stirring for 30 min at 0 °C, H₂O and 1.1 equiv of **20** were added at 0 °C to the reaction mixture. ^b Isolated yield.

Table 6. Synthesis of AM404 analogues 9 containing fatty acid 7^a

^a All reactions were carried out with 1 equiv of fatty acid **7**, 1.1 equiv of Et_3N , and 1.1 equiv of $ClCO_2Et$ in MeCN. After stirring for 30 min at 0 °C, H₂O and 1.1 equiv of **2m** were added at 0 °C to the reaction mixture. ^b Isolated yield.

Next, various AM404 analogues **8ao-ho** and **9am-hm** were synthesized by the condensation of fatty acids **7a-h** with 4-ethoxyaniline (**2o**) and 4-aminophenol (**2m**); the results are summarized in Tables 5 and Table 6, respectively. The reactions of various fatty acids **7a-h** with **2o** and **2m** via the mixed carbonic acid carboxylic anhydrides gave the corresponding AM404 analogues **8ao-ho** in 83-99% yields and **9am-hm** in 76-97% yields, respectively. The stability of the synthesized AM404 analogues **9am-hm** was checked at 0 °C and 22 °C after 240 h by analyses using 2D TLC and ¹H NMR spectra, and no change was observed. Although unsaturated fatty acids are usually sensitive in air at room temperature, it was found that the synthesized AM404 analogues were relatively stable.

Chapter 2. Green synthesis of various medicine analogues containing dipeptides without epimerization under the extremely mild conditions

Although amidation is most important in peptide synthesis, it makes problems such as utilization of a large amount of expensive condensation agent and generation of a large amount of waste.¹¹ In addition, linkage of amino acids in high yields would be a significant research because of easy racemization. Cysteine, histidine, and phenylglycine are more susceptible to racemize than the other amino acids. In particular, synthesis of peptides containing phenylglycine remains a challenging task because it has been reported that phenylglycine easily causes racemization about 60 times compared with alanine.¹² After Vaughan and Boissonnas initially developed the mixed carbonic carboxylic anhydrides as active carboxylic acid derivatives for the preparation of peptides,¹³ Kovacs described the interesting kinetic studies on the *N*-protected methionine and glycylmethionine active esters to determine the racemization rate constants.¹⁴

Recently, we,⁵ Verarado,¹⁵ and Fuse¹⁶ have successively reported the convenient amidations of various *N*-protected α -amino acids with unprotected α -amino acids via the mixed carbonic carboxylic anhydrides in aqueous organic solvents to provide the corresponding dipeptides in excellent yield. On the other hand, peptide medicines have attracted much attention due to the realization of oral administration, targeting of biomolecules in cells, and low side effects compared with antibody medicines.

We have also developed amidations of various *N*-protected α -amino acids with NH₄Cl and aniline derivatives via the mixed carbonic carboxylic anhydrides to provide the corresponding primary amide and anilides in excellent yield.⁷ Herein, we describe green and convenient synthesis of dipeptides-containing various medicine analogues and dipeptides without epimerization at -15 °C via the mixed carbonic carboxylic anhydrides from the corresponding carboxylic acids as indicated in Scheme 4.

Scheme 4. Synthesis of various medicine analogues 17 containing dipeptides 14

Section 1. Preparation of amidation of Cbz-Phg-OH and Cbz-Phe-Phe-OH via mixed carbonic carboxylic anhydrides without racemization and epimerization under extremely mild conditions

In a preliminary investigation, the reaction of Cbz-L-Phg-OH (**10**) with 1.5 equivalents of NH₄Cl in the presence of 1.4 equivalents of ClCO₂Et and 3.0 equivalents of Et₃N in aqueous tetrahydrofuran (THF) at ice-cooled temperature (5 $^{\circ}$ C) afforded Cbz-L-Phg-NH₂ (**10**) in 43% yield with 46% ee as indicated in entry 1 of Table 7. When the reaction was carried out for 0.5 h at 0 $^{\circ}$ C on the step 2), the ee was improved to 67%

(entry 3). When the reaction temperature was decreased to -5 $^{\circ}$ C on both steps 1) and 2), the corresponding primary amide **11** was obtained with 83% ee as shown in entry 6. Effect of decreasing the reaction temperature until -15 $^{\circ}$ C was amazingly well and an excellent enantioselectivity (93% ee) was observed.

	Ph	O 1) $ClCO_2Et$, Et_3N , THF	F	h O	
	Cbz-HN	ОН 2) NH ₄ Cl, H ₂ O	Cbz-H		
		10			11	
Entry	Step) 1)	Ste	p 2)	\mathbf{V}_{in}	0/ 22 ^e
Entry	Temp. (°C)	Time (mir	$Temp. (^{o}C)$	Time (h)	1 leiu (70)	70 CC
1	5	30	5	0.5	43	46
2^{b}	5	30	5	0.5	44	47
3	5	30	0	0.5	47	67
4	5	30	0	24	58	51
5	0	30	0	24	59	59
6	-5	30	-5	24	63	83
7	-10	30	-10	24	63	86
8	-15	30	-15	24	68	93
9 ^c	-15	30	-15	24	79	92
10°	-15	5	-15	24	73	99
11 ^c	-15	10	-15	24	83	99
12^{c}	-15	15	-15	24	89	97
13 ^c	-15	60	-15	24	58	75
$14^{\rm c}$	-15	120	-15	24	32	26
15 ^c	-15	10	-15	0.5	73	99
16 ^c	-15	10	-15	3	77	99
$17^{\rm c}$	-15	10	-15	48	82	98

Table 7. Primary amidation of Cbz-L-Phg-OH (10)^a

^a All reactions were carried out with 0.5 mmol of **10**, 0.7 mmol of ClCO₂Et and 1.5 mmol of Et₃N in 10 mL of THF. After stirring for 30 min, 0.75 mmol of 1.0 M aqueous solution of NH₄Cl was added to the reaction mixture. ^b The D-form was used instead of Cbz-L-Phg-OH. ^c ClCO₂Et and 1.0 M aqueous solution of NH₄Cl precooled at -15 ^oC were added at -15 ^oC to the prepared solutions on the steps 1) and 2), respectively. ^d Isolated yield. ^e Determined by HPLC analysis with 4 : 1 mixture of hexane and isopropanol as an eluent using Chiralcel AD.

The reaction conditions were further optimized by using precooled reagents on both steps 1) and 2) and the best results (83% yield, 99% ee) were obtained when the reaction was carried out for 10 min at -15 $^{\circ}$ C on the step 1) and for 24 h at -15 $^{\circ}$ C on the step 2) as described in entry 11. In order to make sure that the optimized reaction conditions are best, the reaction time was checked on 15, 60, 120 min for the step 1) and on 0.5, 3, 48 h for the step 2) as indicated in entries 12-17. Longer reaction times of the step 1) decreased

Scheme 5. Possible pathway for racemization of 10-OCO₂Et.

Scheme 6. The amidation of 12 with NH₄Cl at 5 °C or -15 °C.

Scheme 7. Possible pathway for racemization of 12-OCO₂Et and for epimerization of 14-OCO₂Et.

the enantiomer excesses (97-26% ee, entries 12, 13 and 14). Then, shorter reaction times of the step 2) decreased the reaction yields (77-73% yields, entries 16 and 15) and longer reaction time of the step 2) did not give any change about both of the yield and the enantiomer excess (entry 17). It is well known that Cbz-L-Phg-OH (10) is easily racemized under various kinds of reaction conditions because of the reactivity on the benzyl position on it as shown in Scheme 5.

As showed in Scheme 6, the reaction of N-phenethyl-L-Phe-OH (12) with NH₄Cl in the presence of ClCO₂Et at 5 $^{\circ}$ C proceeded with racemization via the easier formation of the corresponding 1,3-oxazol-5-one and 2,4-disubstituted 1,3-oxazolin-5-ol.¹⁸ In addition, the unprotected side of dipeptides 14 is epimerized on the basis of the similar reason as indicated in Scheme 7. On the other hand,

Cbz-L-Phe-OCO₂Et was not converted to the corresponding 1,3-oxazol-5-one and was not racemized by the stronger electron-donating effect of the benzyloxy group compared with the phenethyl group of 12-OCO₂Et and 14-OCO₂Et.

) <u>1) CICO</u>	$_2$ Et, Et $_3$ N	, THF			O	
	P.NH H OH	2) NH ₄ 0	Cl, H ₂ O	2	۲۰۰۰ ۲ P [/] N	нΫм	$\rm NH_2$	
	14aa				•	15aa		
Enter	1400	\mathbf{V}_{i}	0/ do ^e	0/ dof	F	Ratio of p	roduct ^g (%)
Ениу	1488	field (%)	% ue	% de	LL	DL	DD	LD
1	Cbz-L-Phe-L-Phe-OH	63	52	48	73.8	0	0	26.2
2	Cbz-L-Phe-D-Phe-OH	66	88	83	8.6	0	0	91.4
3 ^b	Cbz-L-Phe-L-Phe-OH	94	13	15	57.7	0	0	42.3
4 ^b	Cbz-L-Phe-D-Phe-OH	86	67	68	16.1	0	0	83.9
5 ^b	Cbz- _D -Phe- _L -Phe-OH	90	59	58	0	79.0	21.0	0
6^{b}	Cbz- _D -Phe- _D -Phe-OH	86	23	25	0	37.7	62.3	0
$7^{\rm c}$	Cbz-L-Phe-L-Phe-OH	84	>99	>99	>99	0	0	0
8 ^c	Cbz-L-Phe-D-Phe-OH	90	>99	>99	0	0	0	>99
9 ^c	Cbz- _D -Phe- _L -Phe-OH	92	>99	>99	0	>99	0	0
$10^{\rm c}$	Cbz- _D -Phe- _D -Phe-OH	89	>99	>99	0	0	>99	0

Table 8. Optimization of the reaction conditions on the primary amidation of Cbz-Phe-Phe-OH (14aa)^a

....

DI.

^a All reactions were carried out with 0.30 mmol of **14aa**, 0.42 mmol of ClCO₂Et and 0.90 mmol of Et₃N in 6 mL of THF. After stirring for 30 min at 5 °C, 0.45 mmol of 1.0 M aqueous solution of NH₄Cl was added at 5 °C to the reaction mixture. ^b The reaction time on the step 2) was 24 h. ^c ClCO₂Et and 1.0 M aqueous solution of NH₄Cl precooled at -15 °C were added at -15 °C to the prepared solutions on the steps 1) and 2), respectively. Then, the reaction times on the steps 1) and 2) were 10 min and 24 h, respectively. ^d Isolated yield. ^e Determined by ¹H NMR analysis. ^f Determined by HPLC analysis with a 95 : 5 : 0.05 mixture of hexane, ethanol anddiethylamine as an eluent using Chiralcel OD (1.0 mL/min). ^g Retention times of LL-, DL-, DD- and LD-forms on HPLC analysis were 34,5, 41.2, 49.5 and 53.6 min, respectively.

Next, the results of the primary amidation of Cbz-Phe-Phe-OH (**14aa**) using NH₄Cl via the corresponding mixed carbonic carboxylic anhydride are collected in Table 8. The reactions of Cbz-L-Phe-L-Phe-OH (**14aLaL**) and Cbz-L-Phe-D-Phe-OH (**14aLaD**) in our original conditions (for 30 min at 5 °C on the step 1) then for 30 min at 5 °C on the step 2)) afforded the corresponding primary amides (**15aLaL** and **15aLaD**) in 63% and 66% yields, respectively (entries 1 and 2). Unfortunately, these diastereomer excesses were not good (52% de and 88% de, respectively) by epimerization. The reactions of **14aLaL** and **14aDaD** for 24 h at 5 °C on the step 2) proceeded further epimerization to afford worse diastereomer excesses (13% de and 23% de, respectively) as shown in entries 3 and 6. The reaction conditions were optimized well by using precooled reagents at -15 °C on both steps 1) and 2) and the results (84-92% yields, >99% de) were drastically improved as described in entries 7-10.

Section 2. Amidation of dipeptides via mixed carbonic carboxylic anhydrides and its application to synthesis of various medicine analogues

The reactions of various dipeptides **14aL** with NH₄Cl in aqueous THF at -15 °C were then carried out; the results are collected in Table 9. Boc-L-Phe-L-Phe-OH (**14'aLaL**) and Boc-L-Phe-D-Phe-OH (**14'aLaD**) reacted with NH₄Cl to produce the corresponding amides Boc-L-Phe-L-Phe-NH₂ (**15'aLaL**) and Boc-L-Phe-D-Phe-NH₂ (**15'aLaD**) in 85% yield with 81% de and 94% yield with >99% de, respectively (entries 3 and 4). The reaction of Fmoc-protected dipeptides **14''aLaL** and **14''aLaD** afforded **15''aLaL** and **15''aLaD** in 90% yield with 96% de and 95% yield with >99% de, respectively (entries 5 and 6). Then, various Cbz-L-Phe-containing dipeptides **14aLbL-aLfD** reacted readily with NH₄Cl to yield **15aLbL-aLfD** in 76-99% with 70->99% de (entries 7-16). Unfortunately, the reaction of Cys-containing dipeptides **14aLgL** and **14aLgD** with NH₄Cl did not afford the corresponding amide **15aLgL** and **15aLgD** at all, respectively and the starting materials **14aLgL** and **14aLgD** were recovered (entries 17 and 18). I also examined the condensation of various Cbz-protected dipeptides **14cLbL-mLaD** using NH₄Cl. Table 10 shows the results of the condensation of various Cbz-protected dipeptides **14cLbL-mLaD** with NH₄Cl in aqueous THF at -15 °C. The reactions smoothly proceeded to give the corresponding amides **15cLbL-mLaD** in 76-99% yields with 72->99% de.

Subsequently, various dipeptides-containing medicine analogues **17aLaLa-aLaDe** were synthesized by condensation of dipeptides **14aLa** with amino group-substituted medicines such as 4-aminophenol **16a**, dopamine **16b**, amantazine **16c**, (±)-rimantadine **16d**, and memantine **16e** and the results were summarized in Table 11. The reactions of dipeptides Cbz-L-Phe-L-Phe-OH (**14aLaL**) and Cbz-L-Phe-D-Phe-OH (**14aLaD**) with 4-aminophenol **16a** afforded 97% with 96% de and 94% yield with 97% de, respectively (entries 1 and 2). Cbz-L-Phe-L-Phe-OH (**14aLaL**) and Cbz-L-Phe-D-Phe-OH (**14aLaD**) reacted with dopamine **16b** to produce the corresponding amides Cbz-L-Phe-L-Phe-dopamine (**17aLaLb**) and Cbz-L-Phe-D-Phe-dopamine (**17aLaDb**) in 98% yield with 82% de and 99% yield with 88% de, respectively (entries 3 and 4). The other reactions of dipeptides **14aLaL** and **14aLaD** with **16c-e** also proceeded smoothly to produce **17aLaLc-aLaDe** in 74-93% yields with 79-97% de (entries 5-10).

Finally, reactions of various tripeptides **19aLcL** with NH₄Cl in aqueous THF at -15 °C were then carried out; the results are collected in Table 12. Cbz-L-Phe-L-Val-L-Phe-OH (**19aLcLaL**) and Cbz-L-Phe-L-Val-D-Phe-OH (**19aLcLaD**) reacted with NH₄Cl to produce the corresponding amides Cbz-L-Phe-L-Val-L-Phe-NH₂ (**20aLcLaL**) and Cbz-L-Phe-L-Val-L-Phe-NH₂ (**20aLcLaD**) in 95% yield with 76% de and 94% yield with 72% de, respectively (entries 1 and 2). The other reactions of tripeptides **19aLcLbL-aLcLdD** with NH₄Cl also proceeded smoothly to produce **20aLcLbL-aLcLdD** in 77-97% yields (entries 3-8).

		0 1) ClCO ₂ Et, I	Et ₃ N, THF, -15 °C, 10 min		$P = R^5$
PI	n T N î _P .NH H C	$\begin{array}{c} C H \\ C H \end{array} = \begin{array}{c} C I \\ C I \\ H_4 \\ C \\ H_4 \\ C \\ H_4 \\ C \\ H_4 \\ C \\ C \\ H_4 \\ C \\ $	₂ O, -15 °C, 24 h	→ Pn P [,] NH	$H H NH_2$
	14aL			15	5aL
Entry	Р	R^5	15	Yield (%) ^b	% de ^c
1	Cbz	$PhCH_2(L)$	15aLaL	84	>99 ^d
2	Cbz	$PhCH_{2}(D)$	15aLaD	90	>99 ^d
3	Boc	$PhCH_{2}(L)$	15'aLaL	85	81 ^e
4	Boc	$PhCH_{2}(D)$	15'aLaD	94	>99 ^e
5	Fmoc	$PhCH_{2}(L)$	15"aLaL	90	96
б	Fmoc	$PhCH_{2}(D)$	15"aLaD	95	>99
7	Cbz	Me (L)	15aLbL	89	84
8	Cbz	Me (D)	15aLbD	76	>99
9	Cbz	Me ₂ CH (L)	15aLcL	93	>99
10	Cbz	Me ₂ CH (D)	15aLcD	90	>99
11	Cbz	$MeS(CH)_2(L)$	15aLdL	94	>99
12	Cbz	$MeS(CH)_2(D)$	15aLdD	99	>99
13	Cbz	Ph (L)	15aLeL	93	>99
14	Cbz	Ph (D)	15aLeD	84	>99
15	Cbz	CH ₂ OH (L)	15aLfL	80	70
16	Cbz	CH ₂ OH (D)	15aLfD	89	95
17	Cbz	CH ₂ SH (L)	15aLgL	0	-
18	Cbz	$CH_2SH(D)$	15aLgD	0	-

Table 9. Preparation of primary amides derived from various P-L-Phe- α-amino acid 14aL^a

^a All reactions were carried out with 0.30 mmol (1 equiv) of **14aL**, 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et, and 126 μ L (0.90 mmol, 3 equiv) of a precooled Et₃N in 6 mL of anhydrous THF. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the reaction mixture. ^b Isolated yield. ^c Determined by ¹H NMR analysis. ^d Determined by HPLC analysis with a 95 : 5 : 0.05 mixture of hexane, EtOH, and Et₂NH as an eluent using Chiralcel OD (1.0 mL/min). ^e Determined by HPLC analysis with a 4 : 1 mixture of hexane and 2-propanol as an eluent using Chiralcel OD (1.0 mL/min).

		1) ClCO ₂ Et, 1	Et ₃ N, THF, -15 °C, 1	^{0 min} R ¹	$O R^5$	
	P ^{NH} N * 1 P	$^{\circ}$ 2) NH ₄ Cl, H	₂ O, -15 °C, 24 h	ـــــــــــــــــــــــــــــــــــــ	N * Y NH H NH ₂	
	14				15	
Entry	Р	R^1	R^5	15	Yield ^b (%)	%de ^c
1	Cbz	Me	Me (L)	15cLbL	76	86
2	Cbz	Me	Me (D)	15cLbD	86	90
3	Cbz	Me	Me ₂ CH (L)	15cLcL	85	>99
4	Cbz	Me	Me ₂ CH (D)	15cLcD	99	>99
5	Cbz	Me	$MeS(CH_2)_2(L)$	15cLdL	85	>99
6	Cbz	Me	$MeS(CH_2)_2(D)$	15cLdD	83	89
7	Cbz	Me ₂ CH	Me (L)	15bLbL	99	>99
8	Cbz	Me ₂ CH	Me (D)	15bLbD	97	>99
9	Cbz	Me ₂ CH	Me ₂ CH (L)	15bLcL	93	92
10	Cbz	Me ₂ CH	Me ₂ CH (D)	15bLcD	94	72
11	Cbz	Me ₂ CH	$MeS(CH_2)_2(L)$	15bLdL	99	>99
12	Cbz	Me ₂ CH	$MeS(CH_2)_2(D)$	15bLdD	92	89
13	Cbz	MeS(CH ₂) ₂	Me (L)	15dLbL	97	94
14	Cbz	MeS(CH ₂) ₂	Me (D)	15dLbD	97	76
15	Cbz	MeS(CH ₂) ₂	Me ₂ CH (L)	15dLcL	86	>99
16	Cbz	MeS(CH ₂) ₂	Me ₂ CH (D)	15dLcD	84	>99
17	Cbz	MeS(CH ₂) ₂	$MeS(CH_2)_2(L)$	15dLdL	77	97
18	Cbz	MeS(CH ₂) ₂	$MeS(CH_2)_2(D)$	15dLdD	90	>99
19	Boc	C ₆ H ₅ CH ₂ OCH ₂	$PhCH_{2}(L)$	15hLaL	96	97
20	Boc	C ₆ H ₅ CH ₂ OCH ₂	$PhCH_{2}(D)$	15hLaD	96	91
21	N^{α} -Boc- N^{ε} -Cbz	(CH ₂) ₄	$PhCH_{2}(L)$	15mLaL	86	97
22	N^{α} -Boc- N^{ε} -Cbz	(CH ₂) ₄	$PhCH_{2}(D)$	15mLaD	89	96

Table 10. Preparation of primary amides derived from various dipeptides 14^a

^a All reactions were carried out with 0.30 mmol (1 equiv) of **14**, 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et, and 126 μ L (0.90 mmol, 3 equiv) of a precooled Et₃N in 6 mL of anhydrous THF. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the reaction mixture. ^b Isolated yield. ^c Determined by ¹H NMR analysis.

	Ph (1) CICO ₂ Et, Et ₃ N, THF, -15 °C, 10 min H (2) modicing NH (15) °C, 24 h Ph (1) NH-modicing					
	Cbz-NH ⁴ OH ²	Cbz-NH Nn-medicine 17aLa				
Entry	Medicine-NH ₂ 16		17	Yield ^b (%)	%de ^c	
1	4-aminophenol 16a	Ph Cbz-NH Cbz-NH Ph Cbz-NH Cbz-NH Cbz-NH Cbz-NH Cbz-NH	17aLaLa	97	96	
2	4-aminophenol 16a	Ph Cbz-NH H HN O H	17aLaDa	94	97	
3	dopamine 16b	Ph Cbz-NH HN Cbz-NH HN C	17aLaLb	98	82	
4	dopamine 16b	Ph Cbz-NH H HN Cbz-NH	17aLaDb	99	88	
5	amantazine 16c	Ph Cbz-NH HN Cbz-NH HN	17aLaLc	83	88	
6	amantazine 16c	Ph Cbz-NH Ph Cbz-NH Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	17aLaDc	89	95	
7	(<u>+</u>)-rimantadine 16d	Ph Cbz-NH Cbz-NH	17aLaLd	86	79	
8	(<u>+</u>)-rimantadine 16d	Ph Cbz-NH	17aLaDd	93	91	
9	memantine 16e	Ph Cbz-NH H HN	17aLaLe	74	85	
10	memantine 16e		17aLaDe	82	97	

Table 11. Synthesis	of various	medicine	analogues	containing	dipeptides 14	4 ^a

^a All reactions were carried out with 0.30 mmol (1 equiv) of **14aLa**, 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et, and 126 μ L (0.90 mmol, 3 equiv) of a precooled Et₃N in 6 mL of anhydrous THF. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the reaction mixture. ^b Isolated yield. ^c Determined by 1H NMR analysis.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $					$\begin{array}{c} \overset{O}{\underset{Cbz-NH}{}} \overset{H}{\underset{R}{}} \overset{O}{\underset{R}{}} \overset{H}{\underset{R}{}} \overset{H}{\underset{R}} \overset{H}{\underset{R}} \overset{H}{\underset{R}} \overset{H}{\underset{R}}} \overset{H}{\underset{R}} \overset{H}{\overset{H}}{\overset{H}} \overset{H}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}} \overset{H}{\overset{H}}{\overset{H}}{\overset{H}} \overset{H}{\overset{H}}{\overset{H}} \overset{H}{$	
Entry	R ⁶	19aLcL		20aLcL	Yield ^b (%)	%de ^c
1	PhCH ₂ (L)	19aLcLaL	Ph Cbz-NH NH O NH2 Ph	20aLcLaL	95	76
2	PhCH ₂ (D)	19aLcLaD	$\begin{array}{c} O \\ Ph \\ \hline \\ Cbz-NH \\ \end{array} \\ \begin{array}{c} N \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ Ph \\ H \\ O \\ H \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ H \\ H \\ O \\ H \\ H \\ O \\ H \\ \end{array} \\ \begin{array}{c} O \\ H \\ H \\ O \\ H \\ H \\ O \\ H \\ H \\ H \\$	20aLcLaD	94	72
3	Me (L)	19aLcLbL	$\begin{array}{c} O \\ Ph \\ \hline \\ Cbz-NH \\ \end{array} \\ \begin{array}{c} H \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ N \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H \\ H \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H \\ H \\ H \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ H $	20aLcLbL	89	_d
4	Me (D)	19aLcLbD	Ph Cbz-NH NH O NH2 NH2	20aLcLbD	85	_d
5	Me ₂ CH (L)	19aLcLcL	$\begin{array}{c} O \\ Ph \\ \hline \\ Cbz-NH \\ H \\ H \\ O \\ \hline \\ \end{array} \begin{array}{c} H \\ O \\ \hline \\ \\ H \\ O \\ \hline \\ \end{array} \begin{array}{c} H \\ O \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	20aLcLcL	84	_d
6	Me ₂ CH (D)	19aLcLcD	$\begin{array}{c} O \\ Ph \\ \hline \\ Cbz-NH \\ H \\ O \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ H \\ O \\ H \\ O \\ \end{array} \\ \begin{array}{c} O \\ H \\ O \\ $	20aLcLcD	77	_d
7	MeS(CH ₂) ₂ (L)	19aLcLdL	$\begin{array}{c} O \\ Ph \\ \hline \\ Cbz-NH \\ \end{array} \\ \begin{array}{c} H \\ H \\ O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	20aLcLdL	97	_d
8	MeS(CH ₂) ₂ (D)	19aLcLdD	$Ph \xrightarrow{O}_{Cbz-NH} H \xrightarrow{O}_{NH} H \xrightarrow{O}_{NH_2} NH_2$	20aLcLdD	94	_d

Table 12. Preparation of primary amides derived from various tripeptides 19^a

^a All reactions were carried out with 0.30 mmol (1 equiv) of **19aLcL**, 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et, and 126 μ L (0.90 mmol, 3 equiv) of a precooled Et₃N in 6 mL of anhydrous THF. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the reaction mixture. ^b Isolated yield. ^c Determined by ¹H NMR analysis. ^d Not determined neither by ¹H NMR analysis nor HPLC analysis.

Conclusion

Chapter 1. Synthesis of acetaminophen analogues containing α -amino acids and fatty acids for inhibiting hepatotoxicity

I have synthesized acetaminophen analogues **6aLo-mDo** (Table 4) in 57-99% yields, AM404 analogues **8ao-ho** (Table 5) in 83-99% yields, and **9am-hm** (Table 6) in 76-97% yields, by using a convenient and economical procedure (Scheme 8, 9). These analogues would be useful *p*-aminophenol donors and are expected to act as novel antipyretic analgesics like acetaminophen. Various amides were obtained in high to excellent yields with excellent enantioselectivities after purification by silica gel column chromatography, by using CICO₂Et and Et₃N under the mild conditions. In particular, both of the activating agents (CICO₂Et and Et₃N) are relatively inexpensive and the by-products obtained by our efficient method are triethylamine hydrochloride, carbon dioxide, and the corresponding alcohols, which are relatively environmentally benign. Although amidations via activated carboxylic acids are usually carried out under anhydrous conditions, it is quite unique that the reaction of the activated carbonic carboxylic anhydride smoothly in aqueous organic solvent to afford the corresponding amides. Our synthetic method is also characterized by no racemization and low levels of by-products formation.

Scheme 8. Synthesis of acetaminophen analogues 6 containing α -amino acid 5

Scheme 9. Synthesis of AM404 analogues 8,9 containing fatty acid 7

Chapter 2. Green synthesis of various medicine analogues containing dipeptides without epimerization under the extremely mild conditions

In conclusions, various dipeptides 15aLaL-mLaD (Table 9, 10) and tripeptides 20aLcLaL-aLcLdD (Table 12) were prepared in 76-99% yields with 70->99% de and 77-97% yields, respectively (Scheme 10, 12). Then, the various dipeptides-containing medicine analogues 17aLaLa-aLaDe (Table 11) were synthesized in 74-99% yields with 79-97% de (Scheme 11). As a result, I succeeded green and economical synthesis of various dipeptides-containing medicine analogues 17aLaLa-aLaDe (Table 11), dipeptides 15aLaL-mLaD (Table 9, 10), and tripeptides 20aLcLaL-aLcLdD (Table 12) in aqueous THF at -15 °C via the mixed carbonic carboxylic anhydrides by the activation of the corresponding carboxylic acids. It is noted that the results were obtained by precisely controlling the reaction temperature during the activation of the corresponding carboxylic acids. Particularly, it is amazing that racemization or epimerization does not proceed as a result of controlling the reaction temperature by our developed precooled dropping method. In addition, both of the activating agents (ClCO₂Et and Et₃N) are quite cheap and the by-products obtained by our efficient method are triethylamine hydrochloride, carbon dioxide, and the corresponding alcohols, which are quite safe environmentally. Although amidations via activated carboxylic acids are usually carried out under anhydrous conditions, it is quite unique that the reaction of the activated mixed carbonic carboxylic anhydride smoothly proceeded in aqueous organic solvent to afford the corresponding amides. Furthermore, the dipeptides-containing medicine analogues **17aLaLa-aLaDe** (Table 11) have recently attracted much attention for inhibiting side effect in the clinical field and are expected to be useful donors of peptide medicines.

$$Ph \underbrace{\bigvee_{P} NH}_{P} \underbrace{\bigvee_{N} H}_{I4} OH \underbrace{\stackrel{1) \text{CICO}_2\text{Et, Et}_3\text{N, THF, -15 °C, 10 min}}_{I4}}_{I4} Ph \underbrace{\bigvee_{N} H}_{I4} OH \underbrace{\stackrel{1) \text{CICO}_2\text{Et, Et}_3\text{N, THF, -15 °C, 10 min}}_{I4} Ph \underbrace{\bigvee_{N} H}_{I5} OH \underbrace{\stackrel{NH}_{H} H}_{I5} O$$

Scheme 10. Preparation of primary amides derived from various dipeptides 14

Scheme 11. Synthesis of various medicine analogues 17 containing dipeptides 14

Scheme12. Preparation of primary amides derived from various tripeptides 19

Experimental

1. General

All reagents were used without purification. The ¹H NMR and ¹³C NMR spectra were measured with a Bruker Ultrashield TM 400 Plus spectrometer. The chemical shifts of ¹H NMR spectra are expressed in parts per million downfield from tetramethylsilane ($\delta = 0.00$ ppm) as an internal standard. Chemical shifts (δ) are reported in ppm, and spin-spin coupling constants (*J*) are given in hertz (Hz). Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). The high-resolution mass spectra (HRMS) of the compounds with a high molecular weight were recorded with a Waters LCT Premier (ESI-TOF-MS) spectrometer. Reactions were monitored using thin-layer chromatography using silica gel (64-210 mesh). HPLC analysis was carried out with Chiralcel OD (10 mm, 46 × 250 mm), Chiralcel AS (10 mm, 46 × 250 mm), and Chiralcel AD-H (5 mm, 46 × 250 mm) coupled to a photodiode array detector or a dual λ absorbance detector, and HPLC grade solvents were used for HPLC analysis. Melting points were determined with a hot plate apparatus. Optical rotations were measured with a digital polarimeter with a sodium lamp at room temperature. Infrared (IR) spectra were recorded on HORIBA FT-IR Fourier transform infrared spectrophotometer.

2. Typical Procedure for amidation of 3-phenylpropionic acid (1) with 4-chloroanilne 2a

To a colorless solution of 3-phenylpropionic acid **1** (75 mg, 0.50 mmol) in MeCN (10ml) were added at 0 °C Et₃N (77 μ L, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 μ L, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-chloroanilne **2a** (70 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added a 1.0 M of aqueous HCl to pH 2. The resulted suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M of aqueous NaHCO₃ (5 mL), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 1:1 mixture of hexane and EtOAc to afford 125 mg (96% yield) of *N*-(4-chlorophenyl)-3-phenylpropanamide **3a**.

2.1. N-(4-chlorophenyl)-3-phenylpropanamide 3a

Yield: 125 mg (96%); colorless powder; mp: 137-139 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.66$ (t, J = 7.6, 2H, CH₂CO), 3.05 (t, J = 7.6, 2H, CH₂CH₂CO), 6.95 (brs, 1H, NH), 7.21-7.38 (m, 9H, C₆H₄, C₆H₅); ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.5$, 39.3, 121.3, 126.5, 128.0, 128.3, 128.9, 129.3, 136.3, 140.4, 170.7; HRMS (ESI-TOF): Calcd for C₁₅H₁₄NOClNa (M+Na)⁺: 282.0656, found: 282.0667; IR (KBr, v_{max}/cm^{-1}) = 3302 (NH), 1657 (CON).

2.2. N-(4-fluorophenyl)-3-phenylpropanamide, 3b

Yield: 118 mg (97%); colorless powder; mp: 119-120 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.65$ (t, J = 7.4, 2H, CH₂CO), 3.05 (t, J = 7.4, 2H, CH₂CH₂CO), 6.96-7.02, 7.21-7.39 (m, m, 3H, 7H, NH, C₆H₄, C₆H₅); ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.6$, 39.4, 115.5, 115.7, 121.7, 121.8, 126.5, 128.4, 128.7,133.7, 140.6, 160.6, 170.3; HRMS (ESI-TOF): Calcd for C₁₅H₁₄FNONa (M+Na)⁺: 266.0952, found: 266.0977; IR (KBr, ν_{max}/cm^{-1}) = 3289 (NH), 1652 (CON).

2.3. N-(2,3,4,5,6-pentafluorophenyl)-3-phenylpropanamide, 3c

Yield: 105 mg (67%); colorless powder; mp: 128-129 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.77$ (t, J = 7.4, 2H, CH₂CO), 3.07 (t, J = 7.4, 2H, CH₂CH₂CO), 6.57 (brs, 1H, NH), 7.22-7.34 (m, 5H, C₆H₅); ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.3$, 38.0, 126.6, 128.3, 128.8, 140.0, 170.5; HRMS (ESI-TOF): Calcd for C₁₅H₁₀F₅NONa (M+Na)⁺: 338.0575, found: 338.0593; IR (KBr, ν_{max}/cm^{-1}) = 3265 (NH), 1685 (CON).

2.4. ethyl 4-(3-phenylpropanamido)benzoate, 3d

Yield: 104 mg (70%); colorless powder; mp: 132-133 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.38$ (t, J = 7.1, 3H, CH_3CH_2O), 2.69 (t, J = 7.4, 2H, CH_2CO), 3.06 (t, J = 7.4, 2H, CH_2CH_2CO), 4.53 (q, J = 7.1, 2H, CH_3CH_2O), 7.21-7.33 (m, 6H, NH, C_6H_5), 7.50, 7.98 (d, d, J = 8.7, 8.7, 2H, 2H, C_6H_4); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.4$, 31.4, 39.6, 60.9, 118.8, 126.0, 126.5, 128.4, 128.7, 130.8, 140.4, 141.8, 166.1, 170.5; HRMS (ESI-TOF): Calcd for $C_{18}H_{19}NO_3Na$ (M+Na)⁺: 320.1257, found: 320.1250; IR (KBr, v_{max}/cm^{-1}) = 3316 (NH), 1711 (CO₂), 1593 (CON).

2.5. N-(4-nitrophenyl)-3-phenylpropanamide, 3e

Yield: 88 mg (65%); yellow powder; mp: 121-123 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.73 (t, *J* = 7.4, 2H, CH₂CO), 3.08 (t, *J* = 7.4, 2H, CH₂CH₂CO), 7.18 (brs, 1H, NH), 7.23-7.35 (m, 5H, C₆H₅), 7.59, 8.19 (d, d, *J* = 9.2, 9.2, 2H, 2H, C₆H₄); ¹³C NMR (100 MHz, CDCl₃): δ = 31.3, 39.6, 119.0, 125.1, 126.7, 128.4, 128.8, 140.1, 143.5, 143.5, 170.7; HRMS (ESI-TOF): Calcd for C₁₅H₁₅N₂O₃ (M+H)⁺: 271.1077, found: 271.1069; IR (KBr, ν_{max}/cm^{-1}) = 3249 (NH), 1670 (CON), 1504 (NO).

2.6. N-(3,5-dinitrophenyl)-3-phenylpropanamide, 3f

Yield: 47 mg (30%); yellow powder; mp: 166-167 °C; ¹H NMR (400 MHz, MeOD- d^4): $\delta = 2.75$ (t, J = 7.6, 2H, CH₂CO), 3.02 (t, J = 7.6, 2H, CH₂CH₂CO), 7.18 (brs, 1H, NH), 7.14-7.29 (m, 5H, C₆H₅), 8.64, 8.21 (t, d, $J = 2.1, 2.1, 1H, 2H, C_6H_3$); ¹³C NMR (100 MHz, MeOD- d^4): $\delta = 32.3, 39.8, 113.7, 119.9, 127.4, 129.5, 127.4, 127.$

129.6, 142.0, 142.6, 150.1, 174.2; HRMS (ESI-TOF): Calcd for $C_{15}H_{13}N_3O_5Na (M+Na)^+$: 338.0747, found: 338.0747; IR (KBr, v_{max}/cm^{-1}) = 3357 (NH), 1710 (CON), 1540 (NO).

2.7. N-(4-bromophenyl)-3-phenylpropanamide, 3h

Yield: 148 mg (98%); colorless powder; mp: 150-151 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.65$ (t, J = 7.5, 2H, CH₂CO), 3.05 (t, J = 7.5, 2H, CH₂CH₂CO), 7.00 (brs, 1H, NH), 7.21-7.41(m, 9H, C₆H₄, C₆H₅); ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.5$, 39.5, 116.9, 121.4, 126.5, 128.4, 128.7, 131.9, 136.8, 140.5, 170.3; HRMS (ESI-TOF): Calcd for C₁₅H₁₄NOBrNa (M+Na)⁺: 326.0151, found: 326.0112; IR (KBr, $\nu_{max}/cm^{-1}) = 3298$ (NH), 1658 (CON).

2.8. N-(4-iodophenyl)-3-phenylpropanamide, 3i

Yield: 165 mg (94%); colorless powder; mp: 163-165 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.65$ (t, J = 7.5, 2H, CH₂CO), 3.04 (t, J = 7.5, 2H, CH₂CH₂CO), 6.95 (brs, 1H, NH), 7.19-7.32, 7.57-7.61 (m, m, 7H, 2H, C₆H₄, C₆H₅); ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.5$, 39.6, 87.4, 121.7, 126.5, 128.4, 128.7, 137.5, 137.9, 140.5, 170.3; HRMS (ESI-TOF): Calcd for C₁₅H₁₄INONa (M+Na)⁺: 374.0012, found: 373.9984; IR (KBr, v_{max}/cm^{-1}) = 3298 (NH), 1655 (CON).

2.9. N-(4-cyanophenyl)-3-phenylpropanamide, 3j

Yield: 109 mg (87%); colorless powder; mp: 115-117 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 2.68$ (t, $J = 7.6, 2H, CH_2CO$), 2.91 (t, $J = 7.6, 2H, CH_2CH_2CO$), 7.18-7.30 (m, 5H, C₆H₅), 7.72-7.90 (m, 4H, C₆H₄), 10.36 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 30.4, 37.9, 104.6, 118.9, 119.0, 125.9, 128.1, 128.2, 133.2, 140.9, 143.3, 171.2; HRMS (ESI-TOF): Calcd for C₁₆H₁₅N₂O (M+H)⁺: 251.1179, found: 251.1172; IR (KBr, <math>v_{max}/cm^{-1}$) = 3257 (NH), 2218 (CN), 1672 (CON).

2.10. N,3-diphenylpropanamide, 3k

Yield: 106 mg (94%); colorless powder; mp: 130-133 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.67$ (t, J = 7.7, 3H, CH₂CO), 3.07 (t, J = 7.7, 2H, CH₂CH₂CO), 6.96 (brs, 1H, NH), 7.08-7.44 (m, 10H, C₆H₅×2); ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.6$, 39.5, 119.9, 124.3, 126.4, 128.4, 128.7, 129.0, 137.7, 140.6, 170.3; HRMS (ESI-TOF): Calcd for C₁₅H₁₅NONa (M+Na)⁺: 248.1046, found: 248.1068; IR (KBr, v_{max}/cm^{-1}) = 3322 (NH), 1650 (CON).

2.11. N-(4-methylphenyl)-3-phenylpropanamide, 31

Yield: 114 mg (95%); colorless powder; mp: 97-98 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.30$ (s, 3H, CH₃), 2.30 (t, J = 7.4, 2H, CH₂CO), 3.06 (t, J = 7.4, 2H, CH₂CH₂CO), 6.90 (brs, 1H, NH), 7.09-7.11, 7.20-7.33 (m, m, 2H, 7H, C₆H₄, C₆H₅); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.9$, 31.6, 39.5, 120.0, 126.4, 128.4, 128.7, 129.5, 134.0, 135.1, 140.7, 170.1; HRMS (ESI-TOF): Calcd for C₁₆H₁₇NONa (M+Na)⁺: 262.1202, found: 262.1172; IR (KBr, v_{max}/cm^{-1}) = 3300 (NH), 1657 (CON).

2.12. N-(4-hydroxyphenyl)-3-phenylpropanamide, 3m

Yield: 111 mg (92%); colorless powder; mp: 143-145 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 2.55$ (t, $J = 7.7, 2H, CH_2CO$), 2.88 (t, $J = 7.7, 2H, CH_2CH_2CO$), 6.65-6.68, 7.15-7.34 (m, m, 2H, 7H, C₆H₄, C₆H₅), 9.14 (s, 1H, NH), 9.63 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 30.9, 37.7, 114.9, 120.7, 125.8, 128.1, 128.2, 130.8, 141.2, 153.0, 169.5; HRMS (ESI-TOF): Calcd for C₁₅H₁₅NO₂Na (M+Na)⁺: 264.0995, found: 264.1019; IR (KBr, <math>v_{max}/cm^{-1}$) = 3325 (OH), 1660 (CON).

2.13. N-(2-ethoxyphenyl)-3-phenylpropanamide, 3n

Yield: 120 mg (89%); colorless powder; mp: 79-80 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.41$ (t, J = 7.0, 3H, CH_3CH_2O), 2.71 (t, J = 7.8, 2H, CH_2CO), 3.07 (t, J = 7.8, 2H, CH_2CH_2CO), 4.07 (q, J = 7.0, 2H, CH_3CH_2O), 6.83-7.32, 8.38-8.40 (m, m, 8H, 1H, C_6H_4 , C_6H_5), 7.73 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 31.5, 39.7, 64.1, 110.8 119.8, 121.0, 123.5, 126.3, 127.7, 128.4, 128.6, 140.8, 146.9, 170.1; HRMS (ESI-TOF): Calcd for $C_{17}H_{19}NO_2Na$ (M+Na)⁺: 292.1308, found: 292.1268; IR (KBr, v_{max}/cm^{-1}) = 3298 (NH), 1653 (CON).

2.14. N-(4-ethoxyphenyl)-3-phenylpropanamide, 30

Yield: 132 mg (98%); colorless powder; mp: 131-133 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.39$ (t, J = 7.0 Hz, 3H, CH_3CH_2O), 2.64 (t, J = 7.4, 2H, CH_2CO), 3.06 (t, J = 7.4, 2H, CH_2CH_2CO), 4.00 (q, J = 7.0, CH_3CH_2O), 6.82-6.84, 7.18-7.36 (m, m, 3H, 7H, NH, C_6H_4 , C_6H_5); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 31.7, 39.4, 63.7, 114.8, 121.9, 126.4, 128.4, 128.7, 130.7, 140.7, 155.9,170.1; HRMS (ESI-TOF): Calcd for $C_{17}H_{19}NO_2Na$ (M+Na)⁺: 292.1308, found: 292.1313; IR (KBr, v_{max}/cm^{-1}) = 3292 (NH), 1652 (CON).

2.15. N-(4-mercaptophenyl)-3-phenylpropanamide, 3p

Yield: 118 mg (92%); colorless powder; mp: 197-199 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.65$ (t, J = 7.5, 2H, CH₂CO), 3.05 (t, J = 7.5, 2H, CH₂CH₂CO), 3.41 (s, 1H, SH), 6.90 (brs, 1H, NH), 7.22-7.33 (m, 9H, C₆H₄, C₆H₅); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 30.6$, 37.8, 119.7, 125.9, 128.1, 128.2, 129.3, 130.0,

139.3, 141.0, 170.5; HRMS (ESI-TOF): Calcd for $C_{30}H_{28}N_2O_2S_2Na (M+Na)^+$: 535.1484, found: 535.1502; IR (KBr, v_{max}/cm^{-1}) = 3326 (NH), 1658 (CON).

2.16. N-(4-tert-butylphenyl)-3-phenylpropanamide, 3q

Yield: 135 mg (96%); colorless powder; mp: 139-141 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 1.25$ (s, 9H, CH₃×3), 2.59 (t, 2H, J = 7.7, CH₂CO), 2.90 (t, 2H, J = 7.7, CH₂CH₂CO), 7.18-7.31, 7.46-7.49 (m, m, 7H, 2H, C₆H₄, C₆H₅), 9.82 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 30.8$, 31.1, 33.9, 118.8, 125.1, 125.8, 128.1, 128.2, 136.6, 141.1, 145.2, 170.0; HRMS (ESI-TOF): Calcd for C₁₉H₂₄NO (M+H)⁺: 282.1852, found: 282.1866; IR (KBr, v_{max} /cm⁻¹) = 3282 (NH), 1655 (CON).

2.17. N-mesityl-3-phenylpropanamide, 3r

Yield: 100 mg (75%); colorless powder; mp: 171-173 °C; ¹H NMR (400 MHz, DMSO-*d*⁶): δ = 1.97-199 (m, 6H, CH₃×2), 2.20 (s, 3H, CH₃), 2.62 (t, *J* = 7.5, 3H, CH₂CO), 2.92 (t, *J* = 7.5, 2H, CH₂CH₂CO), 6.83 (s, 2H, C₆H₂), 7.19-7.29(m, 5H, C₆H₅), 9.09 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*⁶): δ = 17.8, 20.4, 31.1, 36.7, 125.8, 128.1, 128.1, 128.2, 128.6, 132.5, 134.7, 135.1135.7, 141.1, 169.8; HRMS (ESI-TOF): Calcd for C₁₈H₂₁NONa (M+Na)⁺: 290.1515, found: 290.1546; IR (KBr, *v*_{max}/cm⁻¹) = 3228 (NH), 1646 (CON).

3. Typical Procedure for amidation of Cbz-L-Phe-OH (5aL) with 4-ethoxyaniline 20

To a colorless solution of Cbz-_L-Phe-OH **5aL** (150 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et₃N (77 μ L, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 μ L, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-ethoxyaniline **2o** (75 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added a 1.0 M aqueous HCl to pH 2. The resulted suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5ml), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 3:1 mixture of hexane and EtOAc including a small amount of acetic acid to afford 201 mg (96% yield) of Cbz-_L-Phe-NHC₆H₄-4-OEt **6aLo**.

3.1. Cbz-L-Phe-NHC₆H₄-4-OEt 6aLo

Yield: 201 mg (96%); colorless powder; >99% ee; mp: 178-179 °C; $[\alpha]_D^{30} = +69.0$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.39$ (t, J = 7.0, 3H, CH_3CH_2O), 3.10 (dd, J = 6.0, 7.8, 1H, $CH_AC_6H_5$), 3.21 (dd, J = 6.0, 6.3, 1H, $CH_BC_6H_5$), 3.99 (q, J = 7.0, 3H, CH_3CH_2O), 4.48 (m, 1H, CHCO), 5.12 (s, 2H, OCH₂C₆H₅), 5.42 (brs, 1H, NH), 6.78-6.82, 7.18-7.37 (m, m, 2H, 13H, NH, C₆H₄, C₆H₅×2); ¹³C NMR (100

MHz, CDCl₃): $\delta = 14.8$, 38.7, 57.0, 63.7, 67.3, 114.7, 122.0 127.2, 128.1, 128.3, 128.6, 128.9, 129.4, 129.9, 136.0, 156.1, 168.7; HRMS (ESI-TOF): Calcd for C₂₅H₂₆N₂O₄Na (M+Na)⁺: 441.1785, found: 441.1795; IR (KBr, $v_{max}/cm^{-1}) = 3292$ (NH), 1693 (CON), 1653 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 15 min.

3.2. Cbz-D-Phe-NHC₆H₄-4-OEt 6aDo

Yield: 203 mg (97%); colorless powder; >99% ee; mp: 178-179 °C; $[\alpha]_D^{31} = -70.0$ (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 17 min.

3.3. Cbz-L-Phe-NHC₆H₄-2-OEt 6aLn

Yield: 190 mg (91%); colorless powder; >99% ee; mp: 143-145 °C; $[\alpha]_D^{30} = -17.8$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.30$ (t, $J = 7.0, 3H, CH_3CH_2O$), 3.18 (d, $J = 6.6, 2H, CH_2C_6H_5$), 3.97 (q, $J = 7.0, 2H, CH_3CH_2O$), 4.58-4.59 (m, 1H, CHCO), 5.11 (s, 2H, OCH₂C₆H₅), 5.39 (brs, 1H, NH), 6.80, 6.94, 7.02, 8.33 (d, t, t, d, J = 8.1, 7.8, 7.8, 8.0 Hz, 1H, 1H, 1H, 1H, C_6H_4), 7.20-7.32 (m, 10H, $C_6H_5 \times 2$), 8.11 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.7, 38.8, 64.2, 67.2, 111.0, 119.7, 120.9, 124.1, 127.1, 128.0, 128.2, 128.6, 128.8, 129.3, 136.1, 136.3, 147.4, 168.7; HRMS (ESI-TOF): Calcd for C₂₅H₂₆N₂O₄Na (M+Na)⁺: 441.1785, found: 441.1795; IR (KBr, <math>\nu_{max}/cm^{-1}$) = 3303 (NH), 1680 (CON), 1597 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 26 min.

3.4. Cbz-D-Phe-NHC₆H₄-2-OEt 6aDn

Yield: 190 mg (91%); colorless powder; >99% ee; mp: 143-145 °C; $[\alpha]_D^{30} = +17.8$ (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 51 min.

3.5. Cbz-L-Phe-NHC₆H₄-4-OH 6aLm

Yield: 172 mg (88%); colorless powder; >99% ee; mp: 184-185 °C; $[\alpha]_D^{29} = +65.8$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.83$ (dd, J = 9.2, 10.3, 1H, $CH_AC_6H_5$), 3.00 (dd, J = 9.2, 4.4, 1H, $CH_BC_6H_5$), 4.36-4.37 (m, 1H, CHCO), 4.96 (s, 2H, OCH₂C₆H₅), 6.68-6.71, 7.18-7.37, 7.64-7.70 (m, m, m, 2H, 12H, 1H, NH, C₆H₄, C₆H₅×2), 9.20 (s, 1H, NH), 9.85 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.6, 56.7, 65.2, 115.0, 121.0, 126.2, 127.4, 127.6, 128.0, 128.2, 129.2, 130.4, 137.9, 153.3, 155.8, 169.7;$ HRMS (ESI-TOF): Calcd for C₂₃H₂₂N₂O₄Na (M+Na)⁺: 413.1472, found: 413.1503; IR (KBr, $v_{max}/cm^{-1}) = 3649$ (OH), 1687 (CON), 1660 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 26 min.

3.6. Cbz-D-Phe-NHC₆H₄-4-OH 6aDm

Yield: 172 mg (88%); colorless powder; >99% ee; mp: 184-185 °C; $[\alpha]_D^{29} = -65.5$ (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 30 min.

3.7. Cbz-L-Val-NHC₆H₄-4-OEt 6bLo

Yield: 179 mg (97%); colorless powder; >99% ee; mp: 210-212 °C; $[\alpha]_D^{31} = +37.1$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.00$ (d, d, $J = 6.8, 6.8, 3H, 3H, (CH_3)_2$ CH), 1.39 (t, $J = 7.0, 3H, CH_3$ CH₂O), 2.18-2.26 (m, 1H, CH(CH₃)₂), 4.00 (q, $J = 7.0, 2H, CH_3CH_2O$), 4.07 (m, 1H, CHCO), 5.11 (s, 2H, OCH₂C₆H₅), 5.44 (brs, 1H, NH), 6.81-6.83, 7.34-7.37 (m, m, 2H, 7H, C₆H₄, C₆H₅), 7.76 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8, 18.0, 19.4, 30.9, 61.3, 63.7, 67.3, 114.8, 122.0, 128.1, 128.3, 128.6, 130.3, 136.1, 156.1, 156.7, 169.4; HRMS (ESI-TOF): Calcd for C₂₁H₂₆N₂O₄Na (M+Na)⁺: 393.1785, found: 393.1732; IR (KBr, <math>v_{max}$ /cm⁻¹) = 3300 (NH), 1689 (CON), 1654 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 10 min.

3.8. Cbz-D-Val-NHC₆H₄-4-OEt 6bDo

Yield: 183 mg (99%); colorless powder; >99% ee; mp: 210-212 °C; $[\alpha]_D^{31} = -36.0$ (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 11 min.

3.9. Cbz-L-Ala-NHC₆H₄-4-OEt 6cLo

Yield: 140 mg (82%); colorless powder; >99% ee; mp: 163-164 °C; $[\alpha]_D^{31} = +1.2$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.40$ (t, J = 7.0, 3H, CH_3CH_2O), 1.46 (d, J = 7.0, 3H, CH_3CH), 4.01 (q, J = 7.0, 2H, CH_3CH_2O), 4.22-4.37 (m, 1H, CHCO), 5.13 (s, 2H, $OCH_2C_6H_5$), 5.28 (brs, 1H, NH), 6.83-6.86, 7.32-7.38 (m, m, 2H, 7H, C_6H_4 , C_6H_5), 7.94 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 18.3, 51.1, 63.7, 67.3, 114.7, 121.8, 128.0, 128.3, 128.5, 128.6, 130.6, 136.0, 155.9, 170.3; HRMS (ESI-TOF): Calcd for $C_{19}H_{22}N_2O_4Na$ (M+Na)⁺: 365.1472, found: 365.1440; IR (KBr, v_{max}/cm^{-1}) = 3357 (NH), 1693 (CON), 1668 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 14 min.

3.10. Cbz-D-Ala-NHC₆H₄-4-OEt 6cDo

Yield: 156 mg (91%); colorless powder; 98% ee; mp: 163-164 °C; $[\alpha]_D^{31} = -1.1$ (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 16 min.

3.11. Cbz-L-Met-NHC₆H₄-4-OEt 6dLo

Yield: 171 mg (85%); colorless powder; >99% ee; mp: 129-130 °C; $[\alpha]_D^{31} = +14.7$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.30$ (t, J = 6.9, 3H, CH₃CH₂O), 1.86-1.91 (m, 4H, CH₂CH₂S), 2.05 (s, 3H, CH₃S), 3.98 (q, J = 6.9, 2H, CH₃CH₂O), 4.20-4.21 (m, 1H, CHCO), 5.03 (s, 1H, OCH₂C₆H₅), 6.86, 7.49 (d, d, J = 8.4, 8.4, 2H, 2H, C₆H₄), 7.31-7.64 (m, 6H, NH, C₆H₅), 9.90 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.5$, 14.6, 29.7, 31.5, 54.5, 63.0, 65.4, 114.3, 120.8, 126.9, 127.6, 127.7, 128.2, 131.8, 136.9, 154.4, 156.0, 169.9; HRMS (ESI-TOF): Calcd for C₂₁H₂₆N₂O₄Na (M+Na)⁺: 425.1505, found: 425.1554; IR (KBr, ν_{max} /cm⁻¹) = 3288 (NH), 1689 (CON), 1653 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): *T*_r 15 min.

3.12. Cbz-D-Met-NHC₆H₄-4-OEt 6dDo

Yield: 177 mg (88%); colorless powder; >99% ee; mp: 129-130 °C; $[\alpha]_D^{30} = -13.8$ (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 20 min.

3.13. Cbz-L-Pro-NHC₆H₄-4-OEt 6eLo

Yield: 182 mg (99%); colorless powder; >99% ee; mp: 112-114 °C; $[\alpha]_D^{30} = -38.3$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.40$ (t, J = 6.9, 3H, CH_3CH_2O), 1.95-2.55, 3.46-3.53 (m, m, 4H, 2H, pyrrolidinyl H), 4.01(q, J = 6.9, 2H, CH_3CH_2O), 4.39-4.52 (m, 1H, CHCO), 5.21 (s, 2H, $OCH_2C_6H_5$), 6.81-6.83, 7.26-7.37 (m, m, 2H, 8H, NH, C_6H_4 , C_6H_5), 8.97 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 24.7, 27.7, 47.1, 61.0, 61.4, 63.7, 67.6, 114.7, 121.4, 128.0, 128.2, 128.4, 128.6, 131.2, 136.3, 155.5, 156.7, 169.2; HRMS (ESI-TOF): Calcd for $C_{21}H_{24}N_2O_4Na$ (M+Na)⁺: 391.1628, found: 391.1620; IR (KBr, ν_{max}/cm^{-1}) = 3269 (NH), 1709 (CON), 1664 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 90/10): T_r 56 min.

3.14. Cbz-D-Pro-NHC₆H₄-4-OEt 6eDo

Yield: 182 mg (99%); colorless powder; >99% ee; mp: 112-114 °C; $[\alpha]_D^{30} = +40.8$ (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 90/10): T_r 20 min.

3.15. Boc-L-Phe-NHC₆H₄-4-OEt 6fLo

Yield: 190 mg (99%); colorless powder; >99% ee; mp: 159-161 °C; $[\alpha]_D^{31} = +75.9$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.23-1.32$ (m, 12H, CH₃CH₂O, (CH₃)₃C), 2.82 (dd, *J* = 10.3, 10.4, 1H, CH₄C₆H₅), 2.97 (dd, *J* = 8.8, 10.3, 1H, CH_BC₆H₅), 3.98 (q, *J* = 7.0, 2H, CH₃CH₂O), 4.25-4.31 (m, 1H,

CHCO), 6.87, 7.46 (d, d, $J = 9.0, 9.0, 2H, 2H, C_6H_4$), 7.06-7.31 (m, 6H, NH, C₆H₅), 9.87 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 14.6, 28.1, 56.3, 63.0, 77.9, 114.3, 120.7, 126.2, 127.9, 129.1, 131.9, 137.9, 154.4, 155.3, 170.1;$ HRMS (ESI-TOF): Calcd for C₂₂H₂₈N₂O₄Na (M+Na)⁺: 407.1941, found: 407.1909; IR (KBr, v_{max}/cm^{-1}) = 3344 (NH), 1691 (CON), 1664 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 13 min.

3.16. Boc-D-Phe-NHC₆H₄-4-OEt 6fDo

Yield: 190 mg (99%); colorless powder; 95% ee; mp: 159-161 °C; $[\alpha]_D^{31} = -75.6$ (*c* 0.99, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 8 min.

3.17. Fmoc-L-Phe-NHC₆H₄-4-OEt 6gLo

Yield: 207 mg (82%); colorless powder; >99% ee; mp: 218-220 °C; $[\alpha]_D^{29} = +20.5$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.31$ (t, *J* = 7.0, 3H, *CH*₃CH₂O), 2.89 (dd, *J* = 10.2, 10.3, 1H, *CH*_AC₆H₅), 3.02 (dd, *J* = 4.7, 10.2, 1H, *CH*_BC₆H₅), 3.98 (q, *J* = 7.0, 2H, *CH*₃CH₂O), 4.16-4.19 (m, 3H, *CHCH*₂O), 4.38 (m, 1H, *CHCO*), 6.86-6.88, 7.20-7.89 (m, m, 2H, 16H, NH, C₆H₄, C₆H₅, fluorenyl H), 9.97 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 37.5, 46.5, 56.7, 63.0, 65.6, 114.3, 120.0, 120.7, 125.2, 125.3, 126.2, 126.9, 127.5, 128.0, 129.2, 131.8, 137.9, 140.6, 143.6, 143.7, 154.5, 155.8, 169.8; HRMS (ESI-TOF): Calcd for C₃₂H₃₀N₂O₄Na (M+Na)⁺: 529.2098, found: 529.2053; IR (KBr, ν_{max}/cm^{-1}) = 3307 (NH), 1691 (CON), 1654 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90/10): *T*_r 29 min.

3.18. Fmoc-D-Phe-NHC₆H₄-4-OEt 6gDo

Yield: 240 mg (95%); colorless powder; >99% ee; mp: 218-220 °C; $[\alpha]_D^{29} = -15.6$ (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90/10): T_r 11 min.

3.19. O-benzyl-Boc-L-Ser-NHC₆H₄-4-OEt 6hLo

Yield: 193 mg (93%); colorless powder; >99% ee; mp: 104-105 °C; $[\alpha]_D^{30} = +13.8$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.30$ (t, *J* = 7.0, 3H, *CH*₃CH₂O), 1.39 (s, 9H, (CH₃)₃C), 3.60-3.65 (m, 2H, CH₂CHCO), 3.98 (q, *J* = 7.0, 2H, CH₃CH₂O), 4.34-4.38 (m, 1H, CHCO), 4.50 (s, 2H, OCH₂C₆H₅), 6.87, 7.49 (d, d, *J* = 6.9, 6.9, 2H, 2H, C₆H₄), 6.98-7.33 (m, 6H, NH, C₆H₅), 9.91 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 28.1, 54.8, 63.0, 69.8, 72.0, 78.2, 114.3, 120.7, 127.3, 128.1, 131.8, 138.1, 154.5, 155.1, 168.3; HRMS (ESI-TOF): Calcd for C₂₃H₃₀N₂O₅Na (M+Na)⁺: 437.2047, found: 437.2057; IR

(KBr, $v_{\text{max}}/\text{cm}^{-1}$) = 3350 (NH), 1687 (CON), 1664 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95/5): T_r 19 min.

3.20. O-benzyl-Boc-D-Ser-NHC₆H₄-4-OEt 6hDo

Yield: 197 mg (95%); colorless powder; 98% ee; mp: 104-105 °C; $[\alpha]_D^{30} = -12.8$ (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95/5): T_r 16min.

3.21. S-trityl-Fmoc-L-Cys-NHC₆H₄-4-OEt 6iLo

Yield: 271 mg (77%); colorless powder; 79% ee; mp: 191-193 °C; $[\alpha]_D^{30} = -10.0$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, CDCl₃): $\delta = 1.39$ (t, J = 7.0, 3H, CH_3CH_2O), 2.71-2.79 (m, 2H, SCH_2CHCO), 3.84-3.87 (m, 1H, SCH_2CHCO), 3.99 (q, J = 7.0, 2H, CH_3CH_2O), 4.18 (t, J = 6.8, 1H, $CHCH_2OCO$), 4.42 (d, J = 6.8, 2H, $CHCH_2OCO$), 5.01 (brs, 1H, NH), 6.80-6.82, 7.18-7.76 (m, m, 2H, 26H, C_6H_4 , NH, $C_6H_5\times3$, fluorenyl H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 33.6, 47.1, 54.7, 64.0, 67.1, 67.5, 114.7, 120.0, 121.7, 125.0, 127.0, 127.1, 127.8, 128.1, 129.6, 130.1, 141.3, 143.6, 144.3, 156.0, 167.9; HRMS (ESI-TOF): Calcd for $C_{45}H_{40}N_2O_4SNa$ (M+Na)⁺: 727.2602, found: 727.2616; IR (KBr, v_{max}/cm^{-1}) = 3292 (NH), 1685 (CON), 1662 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90/10): T_r 64 min.

3.22. S-trityl-Fmoc-D-Cys-NHC₆H₄-4-OEt 6iDo

Yield: 278 mg (79%); colorless powder; 86% ee; mp: 191-193 °C; $[\alpha]_D^{29} = +13.5$ (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90/10): T_r 55 min.

3.23. Cbz-L-Tyr-NHC₆H₄-4-OEt 6jLo

Yield: 141 mg (65%); colorless powder; >99% ee; mp: 170-171 °C; $[\alpha]_D^{30} = +64.4$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.31$ (t, $J = 7.0, 3H, CH_3CH_2O$), 3.00 (dd, $J = 5.1, 9.2, 1H, CH_4C_6H_4$), 3.14 (dd, $J = 9.1, 9.2, CH_BC_6H_4$), 3.98 (q, $J = 7.0, 2H, CH_3CH_2O$), 4.42-4.44 (m, 1H, CHCO), 4.97 (s, 2H, OCH₂C₆H₅), 6.85-7.69 (m, 14H, C₆H₄×2, NH, C₆H₅), 9.98 (s, 1H, NH), 10.83 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6, 27.8, 56.0, 63.0, 65.2, 109.8, 111.2, 114.2, 118.1, 118.5, 120.8, 120.8, 123.8, 127.1, 127.5, 127.6, 128.2, 131.9, 135.9, 136.9, 154.4, 155.8, 170.2; HRMS (ESI-TOF): Calcd for C₂₅H₂₆N₂O₅Na₂ (M+2Na)⁺: 480.1626, found: 480.1674; IR (KBr, <math>\nu_{max}/cm^{-1}$) = 3413 (OH), 3313 (NH), 1710 (CON), 1668 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90/10): T_r 62 min.

3.24. Cbz-_D-Tyr-NHC₆H₄-4-OEt 6jDo

Yield: 124 mg (57%); colorless powder; >99% ee; mp: 170-171 °C; $[\alpha]_D^{30} = -62.1$ (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90/10): T_r 81 min.

3.25. Cbz-_L-Trp-NHC₆H₄-4-OEt 6kLo

Yield: 208 mg (91%); colorless powder; >99% ee; mp: 181-182 °C; $[\alpha]_D^{30} = +51.5$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.31$ (t, *J* = 7.0, 3H, *CH*₃CH₂O), 3.00 (dd, *J* = 9.3, 5.1, 1H, *CH*_A-indole), 3.14 (dd, *J* = 5.1, 5.1, 1H, *CH*_B-indole), 3.98 (q, *J* = 7.0, 2H, *CH*₃*CH*₂O), 4.42-4.44 (m, 1H, *CHCO*), 4.97 (s, 2H, OC*H*₂C₆H₅), 6.85-7.69 (m, 15H, C₆H₄, NH, C₆H₅, indolyl H), 9.98 (s, 1H, NHCO), 10.83 (s, indole NH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 27.8, 56.0, 63.0, 65.2, 109.9, 111.2, 114.2, 118.1, 118.5, 120.8, 120.9, 123.8, 127.2, 127.5, 127.6, 128.2, 131.9, 136.0, 136.9, 154.4, 155.8, 170.3; HRMS (ESI-TOF): Calcd for C₂₇H₂₇N₃O₄Na (M+Na)⁺: 480.1894, found: 480.1883; IR (KBr, *v*_{max}/cm⁻¹) = 3415 (NH), 3299 (NH), 1701 (CON), 1658 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 99/1): *T*_r 121 min.

3.26. Cbz-_D-Trp-NHC₆H₄-4-OEt 6kDo

Yield: 208 mg (91%); colorless powder; >99% ee; mp: 181-182 °C; $[\alpha]_D^{30} = -51.1$ (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 90/10): T_r 87 min.

3.27. Boc-L-Gln-NHC₆H₄-4-OEt 6lLo

Yield: 144 mg (79%); colorless powder; >99% ee; mp: 176-178 °C; $[\alpha]_D^{30} = +6.8$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO- d^6): $\delta = 1.30$ (t, J = 7.0, 3H, CH_3CH_2O), 1.38 (s, 9H, $(CH_3)_3C$), 1.75-1.87 (m, 2H, CH_2CH), 2.09-2.16 (m, 2H, CH_2CH_2CH), 3.95-4.02 (m, 3H, CH_3CH_2O , CHCO), 6.78 (s, 1H, NH_A), 6.86, 7,48 (d, d, J = 9.0, 9.0, 2H, 2H, C_6H_4), 7.00 (d, J = 7.8, 1H, NH), 7.29 (s, 1H, NH_B), 9.80 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 14.6$, 27.6, 28.1, 31.5, 54.6, 63.0, 78.0, 114.3, 120.7, 131.9, 154.4, 155.3, 170.3, 173.5; HRMS (ESI-TOF): Calcd for $C_{18}H_{27}N_3O_5Na$ (M+Na)⁺: 388.1843, found: 388.1835; IR (KBr, ν_{max}/cm^{-1}) = 3388 (NH), 3336 (NH), 3194 (NH), 1681 (CON), 1654 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 19 min.

3.28. Boc-p-Gln-NHC₆H₄-4-OEt 6lDo

Yield: 146 mg (80%); colorless powder; >99% ee; mp: 176-178 °C; $[\alpha]_D^{30} = -6.4$ (*c* 1.01, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 14 min.

3.29. N^{α} -Boc- N^{ε} -Cbz-_L-Lys-NHC₆H₄-4-OEt 6mLo

Yield: 241 mg (94%); colorless powder; >99% ee; mp: 139-140 °C; $[\alpha]_D^{30} = +5.4$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.30$ (t, *J* = 7.0, 3H, *CH*₃CH₂O), 1.38 (s, 9H, (CH₃)₃C), 1.54-1.58 (m, 6H, NHCH₂(*CH*₂)₃), 2.95-2.99 (m, 2H, NHCH₂(CH₂)₃), 3.95-4.02 (m, 3H, CH₃CH₂O, CHCO), 4.99 (s, 2H, OCH₂C₆H₅), 6.90, 7.48 (d, d, *J* = 9.0, 9.0, 2H, 2H, C₆H₄), 7.00 (d, *J* = 7.8, 1H, NHCH), 9.80 (s, 1H, NHCO); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 22.8, 28.1, 29.0, 31.5, 54.9, 63.0, 65.0, 77.9, 114.3, 120.6, 127.6, 128.2, 132.0, 137.2, 154.3, 155.4, 156.0, 170.7; HRMS (ESI-TOF): Calcd for C₂₇H₃₇N₃O₆Na (M+Na)⁺: 522.2575, found: 522.2547; IR (KBr, ν_{max}/cm^{-1}) = 3338 (NH), 1695 (CON), 1666 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): *T*_r 37 min.

3.30. N^{α} -Boc- N^{ε} -Cbz-_D-Lys-NHC₆H₄-4-OEt 6mDo

Yield: 249 mg (97%); colorless powder; >99% ee; mp: 139-140 °C; $[\alpha]_D^{30} = -5.5$ (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90/10): T_r 15 min.

4. Typical Procedure for amidation of lauric acid 7a with 4-ethoxyaniline 2o

To a colorless solution of lauric acid **7a** (100 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et_3N (77 µL, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 µL, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-ethoxyaniline **2o** (75 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added a 1.0 M aqueous HCl to pH 2. The resulted suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5ml), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 2:1 mixture of hexane and EtOAc to afford 155 mg (97% yield) of *N*-(4-ethoxyphenyl)lauramide **8ao**.

4.1. N-(4-ethoxyphenyl)lauramide 8ao

Yield: 155 mg (97%); colorless powder; mp: 104-105 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.8, 3H, $CH_3(CH_2)_{10}$), 1.26-1.41 (m, 16H, $CH_3(CH_2)_8$), 1.40 (t, J = 7.0, 3H, CH_3CH_2O), 1.70-1.75 (m, 2H, CH_2CH_2CO), 2.32 (t, J = 7.6, 2H, CH_2CH_2CO), 4.01 (q, J = 7.0, 2H, CH_3CH_2O), 6.84, 7.39 (d, d, J = 8.9, 8.9, 2H, 2H, C_6H_4), 7.03 (brs, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 14.8, 22.7, 25.7, 29.3, 29.3, 29.4, 29.5, 29.6, 31.9, 37.7, 63.7, 114.8, 121.7, 131.0, 155.7, 171.2; HRMS (ESI-TOF): Calcd for $C_{20}H_{33}NO_2Na (M+Na)^+$: 342.2404, found: 342.2403; IR (KBr, $v_{max}/cm^{-1}) = 3302$ (NH), 1653 (CON).

4.2. N-(4-ethoxyphenyl)palmitamide 8bo

Yield: 184 mg (98%); colorless powder; mp: 111-112 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.8, 3H, $CH_3(CH_2)_{14}$), 1.25-1.41 (m, 24H, $CH_3(CH_2)_{12}$), 1.40 (t, J = 7.0, 3H, CH_3CH_2O), 1.70-1.71 (m, 2H, CH_2CH_2CO), 2.32 (t, J = 7.6, 2H, CH_2CH_2CO), 4.01 (q, J = 7.0, 2H, CH_3CH_2O), 6.84, 7.39 (d, d, J = 9.0, 9.0, 2H, 2H, C_6H_4), 7.05 (brs, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 14.8, 22.7, 25.7, 29.3, 29.4, 29.4, 29.5, 29.6, 29.7, 29.7, 31.9, 37.7, 63.7, 114.8, 121.7, 131.0, 155.7, 171.3; HRMS (ESI-TOF): Calcd for $C_{24}H_{41}NO_2Na$ (M+Na)⁺: 398.3030, found: 398.3046; IR (KBr, v_{max}/cm^{-1}) = 3302 (NH), 1658 (CON).

4.3. N-(4-ethoxyphenyl)oleamide 8co

Yield: 178 mg (89%); colorless powder; mp: 66-67 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 0.84$ (t, J = 7.0, 3H, $CH_3(CH_2)_7$), 1.23-1.31 (m, 23H, CH_3CH_2O , $CH_3(CH_2)_6$, $(CH_2)_4CH_2CH_2CO$), 1.54-1.57 (m, 2H, CH_2CH_2CO), 1.97-1.98 (m, 4H, $CH_2CH\times 2$), 2.24 (t, J = 7.4, 2H, CH_2CO), 3.97 (q, J = 7.0, 2H, CH_3CH_2O), 5.28-5.36 (m, 2H, $CH\times 2$), 6.83, 7.46 (d, d, J = 8.9, 8.9, 2H, 2H, C_6H_4), 9.67 (s, 1H, NHCO); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 13.9$, 14.6, 22.1, 25.2, 26.6, 26.6, 28.6, 28.6, 28.7, 28.8, 29.1, 31.3, 36.3, 63.0, 114.2, 120.5, 129.5, 129.6, 132.5, 154.2, 170.6; HRMS (ESI-TOF): Calcd for $C_{26}H_{43}NO_2Na$ (M+Na)⁺: 424.3186, found: 424.3218; IR (KBr, v_{max}/cm^{-1}) = 3296 (NH), 1653 (CON).

4.4. (9Z,12Z)-N-(4-ethoxyphenyl)linoleamide 8do

Yield: 186 mg (93%); yellow powder; mp: 47-48 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.9, 3H, $CH_3(CH_2)_4$), 1.27-1.40 (m, 14H, $CH_3(CH_2)_3$, $(CH_2)_4CH_2CH_2CO)$, 1.39 (t, $J = 7.0, 3H, CH_3CH_2O$), 1.66-1.71 (m, 2H, CH_2CH_2CO), 2.02-2.07 (m, 4H, $CH_2CH_2CH\times 2$), 2.30 (t, $J = 7.6, 2H, CH_2CO$), 2.75-278 (m, 2H, $CHCH_2CH$), 3.99 (q, $J = 7.0, 2H, CH_3CH_2O$), 5.29-5.40 (m, 4H, $CH\times 4$), 6.81, 7.38 (d, d, $J = 9.0, 9.0, 2H, 2H, C_6H_4$), 7.42 (brs, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1, 14.8, 22.6, 25.7, 25.7, 29.2, 29.3, 29.3, 29.4, 29.6, 31.5, 37.6, 63.7, 114.8, 115.1, 121.8, 130.1, 130.2, 131.1, 155.7, 171.4; HRMS (ESI-TOF): Calcd for C₂₆H₄₁NO₂Na (M+Na)⁺: 422.3030, found: 422.3019; IR (KBr, <math>v_{max}/cm^{-1}) = 3302$ (NH), 1655 (CON).

4.5. (9Z,12Z,15Z)-N-(4-ethoxyphenyl)linolenamide 8eo

Yield: 189 mg (95%); yellow powder; mp: 47-49 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.5, 3H, CH₃CH₂CH), 1.28-1.41 (m, 8H, (CH₂)₄CH₂CH₂CO), 1.39 (t, J = 7.0, 3H, CH₃CH₂O), 1.66-1.73 (m, 2H, CH₂CH₂CO), 2.03-2.11 (m, 4H, CH₃CH₂CH, CH₂CH₂CH), 2.32 (t, J = 7.6, 2H, CH₂CO), 2.75-2.82 (m, 4H,

CHC H_2 CH×2), 4.00 (q, J = 7.0, 2H, CH₃C H_2 O), 5.30-5.41 (m, 6H, CH×6), 6.84, 7.39 (d, d, J = 9.0, 9.0, 2H, 2H, C₆H₄), 7.11 (s, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.3, 14.8, 20.6, 25.5, 25.6, 25.7, 27.2, 29.1, 29.3, 29.6, 37.7, 63.7, 114.8, 121.7, 127.1, 127.6, 128.3, 128.3, 130.3, 130.9, 132.0, 155.7, 171.2;$ HRMS (ESI-TOF): Calcd for C₂₆H₃₉NO₂Na (M+Na)⁺: 420.2873, found: 420.2862; IR (KBr, v_{max}/cm^{-1}) = 3300 (NH), 1655 (CON).

4.6. (E)-N-(4-ethoxyphenyl)elaidamide 8fo

Yield: 166 mg (83%); colorless powder; mp: 87-88 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9, 3H, $CH_3(CH_2)_7$), 1.26-1.41 (m, 20H, $CH_3(CH_2)_6$, $(CH_2)_4CH_2CH_2CO$), 1.40 (t, J = 7.0, 3H, CH_3CH_2O), 1.67-1.75 (m, 2H, CH_2CH_2CO), 1.94-1.97 (m, 4H, $CH_2CH\times 2$), 2.32 (t, J = 7.6, 2H, CH_2CO), 4.00 (q, J = 7.0, 2H, CH_3CH_2O), 5.37-5.39 (m, 2H, $CH\times 2$), 6.84, 7.39 (d, d, J = 9.0, 9.0, 2H, 2H, C_6H_4), 7.05 (brs, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 14.8, 22.7, 25.7, 29.0, 29.2, 29.3, 29.3, 29.5, 29.6, 29.7, 31.9, 32.6, 32.6, 37.7, 63.7, 114.8, 121.7, 130.2, 130.5, 131.0, 155.7, 171.2; HRMS (ESI-TOF): Calcd for $C_{26}H_{43}NO_2Na$ (M+Na)⁺: 424.3186, found: 424.3218; IR (KBr, v_{max}/cm^{-1}) = 3323 (NH), 1655 (CON).

4.7. (5Z,8Z,11Z,14Z)-N-(4-ethoxyphenyl)arachidonamide 8go

Yield: 49 mg (93%); brown oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.9, 3H, $CH_3(CH_2)_4$), 1.27-1.41 (m, 6H, $CH_3(CH_2)_3$), 1.40 (t, J = 7.0, 3H, CH_3CH_2O), 1.81-1.85 (m, 2H, CH_2CH_2CO), 2.03-2.20 (m, 4H, $CH_2CH_2CH\times2$), 2.33 (t, J = 7.6, 2H, CH_2CO), 2.79-2.83 (m, 6H, $CHCH_2CH\times3$), 4.00 (q, J = 7.0, 2H, CH_3CH_2O), 5.30-5.46 (m, 8H, $CH\times8$), 6.83, 7.38 (d, d, J = 9.0, 9.0, 2H, 2H, C_6H_4), 7.07 (brs, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 14.8, 22.6, 25.4, 25.7, 26.5, 27.2, 29.3, 31.3, 36.9, 63.7, 114.8, 121.7, 127.5, 127.9, 128.2, 128.3, 128.6, 129.1, 130.5, 130.9, 155.8, 170.9; HRMS (ESI-TOF): Calcd for $C_{28}H_{41}NO_2Na$ (M+Na)⁺: 446.3030, found: 446.3061; IR (KBr, v_{max}/cm^{-1}) = 3292 (NH), 1655 (CON).

4.8. (4Z,7Z,10Z,13Z,16Z,19Z)-N-(4-ethoxyphenyl)docosahexaeno-amide 8ho

Yield: 49 mg (99%); brown oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.5, 3H, CH_3CH_2CH), 1.39 (t, J = 7.0, 3H, CH_3CH_2O), 2.04-2.11 (m, 2H, CH_3CH_2CH), 2.36-2.40 (m, 2H, CH_2CH_2CO), 2.48 (t, J = 6.7, 2H, CH_2CO), 2.70-2.88 (m, 10H, $CHCH_2CH \times 5$), 3.99 (q, J = 7.0, 2H, CH_3CH_2O), 5.32-5.45 (m, 6H, $CH \times 12$), 6.82, 7.37 (d, d, J = 9.0, 9.0, 2H, 2H, C_6H_4), 7.33 (s, 1H, NHCO); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.3$, 14.8, 20.6, 23.4, 25.6, 25.7, 37.2, 63.7, 114.7, 121.8, 127.0, 128.0, 128.1, 128.1, 128.3, 128.3, 128.4,

128.6, 129.6, 130.9, 155.8, 170.6; HRMS (ESI-TOF): Calcd for $C_{30}H_{41}NO_2Na (M+Na)^+$: 470.3030, found: 470.3023; IR (KBr, v_{max}/cm^{-1}) = 3296 (NH), 1655 (CON).

5. Typical Procedure for amidation of lauric acid 7a with 4-aminophenol 2m

To a colorless solution of lauric acid **7a** (100 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et_3N (77 µL, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 µL, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-ethoxyaniline **2m** (75 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added a 1.0 M aqueous HCl to pH 2. The resulted suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5ml), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 2:1 mixture of hexane and EtOAc to afford 127 mg (87% yield) of *N*-(4-hydroxyphenyl)lauramide **9am**.

5.1. N-(4-hydroxyphenyl)lauramide 9am

Yield: 127 mg (87%); colorless powder; mp: 130-131 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 0.85$ (t, $J = 6.8, 3H, CH_3(CH_2)_{10}$), 1.24-1.27 (m, 16H, CH₃(CH₂)₈), 1.53-1.57 (m, 2H, CH₂CH₂CO), 2.22 (t, J = 7.4, 2H, CH₂CO), 6.66, 7.34 (d, d, $J = 8.9, 8.8, 2H, 2H, C_6H_4$), 9.10 (s, 1H, NHCO), 9.55 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 13.9, 22.0, 25.2, 28.6, 28.6, 28.7, 28.4, 28.9, 28.9, 31.2, 36.2, 114.9, 120.8, 131.0, 153.0, 170.4; HRMS (ESI-TOF): Calcd for C₁₈H₂₉NO₂Na (M+Na)⁺: 314.2091, found: 314.2099; IR (KBr, <math>v_{max}/cm^{-1}) = 3313$ (NH), 1653 (CON).

5.2. N-(4-hydroxyphenyl)palmitamide 9bm

Yield: 132 mg (76%); colorless powder; mp: 133-134 °C; ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.85$ (t, $J = 7.0, 3H, CH_3(CH_2)_{14}$), 1.24-1.27 (m, 24H, CH₃(CH₂)_{12}), 1.53-1.57 (m, 2H, CH₂CH₂CO), 2.22 (t, J = 7.4, 2H, CH₂CO), 6.66, 7.34 (d, d, $J = 8.9, 8.9, 2H, 2H, C_6H_4$), 9.10 (s, 1H, NHCO), 9.55 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 13.8, 22.0, 25.2, 28.6, 28.7, 28.8, 28.9, 28.9, 31.2, 114, 9, 120.8, 130.9, 153.0, 170.5; HRMS (ESI-TOF): Calcd for C₂₂H₃₇NO₂Na (M+Na)⁺: 370.2717, found: 370.2760; IR (KBr, <math>v_{max}/cm^{-1}$) = 3315 (NH), 1653 (CON).

5.3. N-(4-hydroxyphenyl)oleamide 9cm

Yield: 147 mg (79%); colorless powder; mp: 99-100 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9, 3H, $CH_3(CH_2)_7$), 1.27-1.32 (m, 20H, $CH_3(CH_2)_6$, $(CH_2)_4CH_2CH_2CO$), 1.68-175 (m, 2H, CH_2CH_2CO),

2.00-2.02 (m, 4H, $CH_2CH\times 2$), 2.33 (t, J = 7.6, 2H, CH_2CO), 5.33-5.36 (m, 2H, $CH\times 2$), 5.50 (brs, 1H, NHCO), 6.76, 7.29 (d, d, 2H, 2H, J = 8.8, 8.7, C_6H_4), 7.06 (brs, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 22.7, 25.7, 27.2, 27.3, 29.2, 29.3, 29.3, 29.3, 29.5, 29.7, 29.8, 31.9, 37.6, 115.8, 122.6, 129.8, 130.0, 130,4, 153.1, 171.8; HRMS (ESI-TOF): Calcd for $C_{24}H_{39}NO_2Na$ (M+Na)⁺: 396.2873, found: 396.2899; IR (KBr, $v_{max}/cm^{-1}) = 3278$ (NH), 1649 (CON).

5.4. (9Z,12Z)-N-(4-hydroxyphenyl)linoleamide 9dm

Yield: 174 mg (94%); colorless powder; mp: 86-87 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 0.85$ (t, J = 6.2, 3H, $CH_3(CH_2)_4$), 1.26-1.33 (m, 14H, $CH_3(CH_2)_3$, $(CH_2)_4CH_2CH_2CO$), 1.53-1.55 (m, 2H, $CH_2CH_2CH_2CO$), 1.99-2.02 (m, 4H, $CH_2CH_2CH \times 2$), 2.22 (t, J = 7.4, 2H, CH_2CO), 2.72-2.75 (m, 2H, $CHCH_2CH$), 5.24-5.38 (m, 4H, $CH \times 4$), 6.66, 7.34 (d, d, J = 8.7, 8.7, 2H, 2H, C_6H_4), 9.10 (s, 1H, NHCO), 9.55 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 13.8$, 21.9, 25.1, 25.2, 26.5, 26.5, 28.5, 28.6, 28.6, 28.9, 30.8, 36.2, 114.9, 120.8, 127.7, 127.7, 129.6, 129.7, 130.9, 153.0, 170.4; HRMS (ESI-TOF): Calcd for $C_{24}H_{37}NO_2Na$ (M+Na)⁺: 394.2717, found: 394.2704; IR (KBr, v_{max}/cm^{-1}) = 3319 (NH), 1655 (CON).

5.5. (9Z,12Z,15Z)-N-(4-hydroxyphenyl)linolenamide 9em

Yield: 152 mg (82%); colorless powder; mp: 81-82 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.5, 3H, CH_3CH_2CH), 1.26-1.32 (m, 8H, $(CH_2)_4CH_2CH_2CO$), 1.66-1.74 (m, 2H, CH_2CH_2CO), 2.02-2.11 (m, 4H, CH_3CH_2CH , CH_2CH_2CH), 2.32 (t, J = 7.6, 2H, CH_2CO), 2.77-2.82 (m, 4H, $CHCH_2CH\times 2$), 5.32-5.39 (m, 6H, $CH\times 6$), 6.73, 7.23 (d, d, J = 8.8, 8.8, 2H, 2H, C_6H_4), 6.83 (s, 1H, NHCO), 7.30 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.6$, 22.6, 22.7, 25.5, 25.6, 25.8, 27.2, 29.2, 29.3, 29.3, 29.3, 29.6, 29.6, 29.8, 31.5, 31.9, 37.4, 116.2, 127.1, 127.7, 127.9, 128.0, 128.3, 128.3, 129.6, 130.1, 130.3, 130.3, 132.0, 153.7, 172.6; HRMS (ESI-TOF): Calcd for $C_{24}H_{35}NO_2Na$ (M+Na)⁺: 392.2560, found: 392.2568; IR (KBr, v_{max}/cm^{-1}) = 3319 (NH), 1655 (CON).

5.6. (E)-N-(4-hydroxyphenyl)elaidamide 9fm

Yield: 181 mg (97%); colorless powder; mp: 117-119 °C; ¹H NMR (400 MHz, DMSO- d^6): $\delta = 0.85$ (t, $J = 6.9, 3H, CH_3(CH_2)_7$), 1.23-1.27 (m, 20H, CH₃(CH₂)₆, (CH₂)₄ CH₂CH₂CO), 1.53-1.57 (m, 2H, CH₂CH₂CO), 1.93-1.94 (m, 4H, CH₂CH×2), 2.22 (t, $J = 7.4, 2H, CH_2CO$), 5.35-5.37 (m, 2H, CH×2), 6.66, 7.34 (d, d, $J = 8.9, 8.9, 2H, 2H, C_6H_4$), 9.10 (s, 1H, NHCO), 9.55 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 13.9, 22.0, 25.1, 28.3, 28.4, 28.6, 28.6, 28.7, 28.9, 31.2, 31.9, 114.6, 120.7, 130.0, 130.0, 131.0, 153.0, 170.4;$

HRMS (ESI-TOF): Calcd for $C_{24}H_{39}NO_2Na (M+Na)^+$: 396.2873, found: 396.2899; IR (KBr, v_{max}/cm^{-1}) = 3332 (NH), 1655 (CON).

5.7. (5Z,8Z,11Z,14Z)-N-(4-hydroxyphenyl)arachidonamide 9gm

Yield: 124 mg (90%); colorless powder; mp: 51-52 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9, 3H, $CH_3(CH_2)_4$), 1.25-1.39 (m, 6H, $CH_3(CH_2)_3$), 1.77-1.85 (m, 2H, CH_2CH_2CO), 2.02-2.08 (m, 2H, $CH_3(CH_2)_3CH_2$), 2.14-2.18 (m, 2H, $CH_2(CH_2)_2CO$), 2.34 (t, J = 7.6, 2H, CH_2CO), 2.79-2.84 (m, 6H, $CHCH_2CH\times3$), 5.30-5.44 (m, 8H, $CH\times8$), 6.17 (brs, 1H, NHCO), 6.74, 7.25 (d, d, 2H, 2H, J = 8.8, 7.4, C_6H_4), 7.15 (s, 1H, OH); ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 14.1$, 22.6, 25.4, 25.7, 26.6, 27.2, 29.3, 31.5, 36.8, 115.8, 122.6, 127.5, 127.9, 128.1, 128.3, 128.6, 129.0, 130.2, 130.6, 153.2, 171.6; HRMS (ESI-TOF): Calcd for $C_{26}H_{37}NO_2Na$ (M+Na)⁺: 418.2717, found: 418.2767; IR (KBr, v_{max}/cm^{-1}) = 3315 (NH), 1653 (CON).

5.8. (4Z,7Z,10Z,13Z,16Z,19Z)-N-(4-hydroxyphenyl)docosahexaen-amide 9hm

Yield: 36 mg (78%); brown oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.5, 3H, CH_3CH_2CH), 2.03-2.09 (m, 2H, CH_3CH_2CH), 2.36-2.40 (m, 2H, CH_2CH_2CO), 2.49 (t, J = 7.1, 2H, CH_2CO), 2.79-2.85 (m, 10H, $CHCH_2CH \times 5$), 5.32-5.43 (m, 13H, $CH \times 12$, NHCO), 6.71, 7.19 (d, d, J = 8.6, 8.2, 2H, 2H, C_6H_4), 7.45 (brs, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.3$, 20.6, 23.4, 25.6, 25.7, 37.1, 115.6, 123.0, 127.0, 127.9, 128.0, 128.1, 128.3, 128.3, 128.4, 128.6, 129.7, 129.8, 132.1, 153.7, 171.6; HRMS (ESI-TOF): Calcd for $C_{28}H_{37}NO_2Na$ (M+Na)⁺: 442.2717, found: 442.2695; IR (KBr, v_{max}/cm^{-1}) = 3302 (NH), 1657 (CON).

6. Typical procedure of the primary amidation of Cbz-L-Phg-OH 10 with NH₄Cl

To a colorless solution of 142 mg (0.50 mmol, 1 equiv) of Cbz-L-Phg-OH **10** in 10 mL of anhydrous THF were added dropwise at -15 °C 209 μ L (1.5 mmol, 3.0 equiv) of a precooled Et₃N and 67 μ L (0.7 mmol, 1.4 equiv) of a precooled ClCO₂Et. After stirring for 10 min at -15 °C, 0.75 mL (0.75 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added at -15 °C to the colorless suspension. The mixture was stirred for 24 h at -15 °C and 15mL of H₂O was added dropwise at -15 °C to the resulted mixture. The suspension was extracted with 100 mL of EtOAc, washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 1:1 mixture of hexane and EtOAc to afford 118 mg (83% yield) of Cbz-_L-Phg-NH₂ **11**.

6.1. Cbz-L-Phg-NH₂ 11

Yield: 118 mg (83%); colorless powder; 99% ee; mp: 173-174 °C; $[\alpha]_D^{26} = +85.3$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 5.03$ (s, 2H, OCH₂C₆H₅), 5.17 (d, J = 8.5, 1H, CHC₆H₅), 7.15 (s, 1H,

NH_A), 7.26-7.44 (m, 10H, C₆H₅×2), 7.60 (s, 1H, NH_B), 7.80 (d, J = 8.5, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 58.1$, 65.5, 127.2, 127.5, 127.6, 127.8, 128.2, 128.3, 137.0, 138.8, 155.6, 171.7; HRMS (ESI-TOF): Calcd for C₁₆H₁₆N₂O₃Na (M+Na)⁺: 307.1053, Found: 307.1031; IR (KBr, v_{max}/cm^{-1}) = 3420 (NH), 3332 (NH), 3275 (NH), 3203 (NH), 1658 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 80/20): T_r 26 min.

6.2. Cbz-D-Phg-NH₂ 11D

Yield: 109 mg (77%); colorless powder; 99% ee; $[\alpha]_D^{26} = -80.4$ (*c* 1.01, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 80/20): T_r 18 min.

7. Typical procedure of the primary amidation of Cbz-L-Phe-L-Phe-OH 14aLaL with NH₄Cl

To a colorless solution of 134 mg (0.30 mmol) of Cbz-L-Phe-L-Phe-OH (**14aLaL**) in 6 mL of anhydrous THF were added dropwise at -15 °C 126 μ L (0.9 mmol, 3.0 equiv) of a precooled Et₃N and 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the colorless suspension. The mixture was stirred for 24 h at -15 °C and 15mL of H₂O was added dropwise at -15 °C to the resulted mixture. The suspension was extracted with 100 mL of EtOAc, washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 1:1 mixture of hexane and EtOAc to afford 96 mg (85% yield) of Cbz-L-Phe-L-Phe-NH₂ **15aLaL**.

7.1. Cbz-L-Phe-L-Phe-NH₂ 15aLaL

Yield: 112 mg (84%); colorless powder; >99% de; mp: 234-235 °C; $[\alpha]_D^{27} = -4.1$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.67$ (dd, J = 10.7, 13.8, 1H, $CH_AC_6H_5$), 2.84 (dd, J = 8.7, 13.7, 1H, $CH_AC_6H_5$), 2.92 (dd, J = 3.9, 13.7, 1H, $CH_BC_6H_5$), 3.01 (dd, J = 5.1, 13.8, 1H, $CH_BC_6H_5$), 4.19-4.25 (m, 1H, CHCO), 4.43-4.49 (m, 1H, $CHNHCO_2$), 4.93 (s, 2H, $OCH_2C_6H_5$), 7.13 (brs, 1H, NH_A), 7.16-7.35 (m, 15H, $C_6H_5 \times 3$), 7.41 (brs, 1H, NH_B), 7.51 (d, J = 8.7, 1H, NHCO), 8.05 (d, J = 8.2, 1H, $NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4$, 37.7, 53.7, 56.2, 65.2, 126.3, 127.4, 127.7, 128.0, 128.3, 129.2, 129.3, 137.0, 137.7, 138.1, 155.7, 171.2, 172.6; HRMS (ESI-TOF): Calcd for $C_{26}H_{25}N_3O_4Na$ (M+Na)⁺: 468.1894, Found: 468.1841; IR (KBr, v_{max}/cm^{-1}) = 3375 (NH), 3319 (NH), 3213 (NH), 1695 (CON), 1643 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/EtOH/Et₂NH = 95/5/0.05): T_r 35 min.

7.2. Cbz-L-Phe-D-Phe-NH₂ 15aLaD

Yield: 120 mg (90%); colorless powder; >99% de; mp: 201-203 °C; $[\alpha]_D^{27} = +17.4$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.36$ (dd, J = 10.7, 13.6, 1H, $CH_AC_6H_5$), 2.54 (dd, J = 3.5, 13.6, 1H, $CH_AC_6H_5$), 2.68 (dd, J = 10.1, 13.6, 1H, $CH_BC_6H_5$), 2.96 (dd, J = 4.3, 13.6, 1H, $CH_BC_6H_5$), 4.12-4.18 (m, 1H, CHCO), 4.39-4.45 (m, 1H, CHNHCO₂), 4.83 (s, 2H, OCH₂C₆H₅), 7.07-7.23 (m, 16H, NH_A, C₆H₅×3), 7.36 (d, J = 8.5, 1H, NHCO), 7.39 (brs, 1H, NH_B), 8.28 (d, J = 8.7, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4$, 37.8, 53.6, 56.2, 65.2, 126.2, 126.3, 127.5, 127.7, 128.0, 128.0, 128.3, 129.2, 129.3, 137.0, 137.9, 138.1, 155.9, 171.2, 173.0; HRMS (ESI-TOF): Calcd for C₂₆H₂₅N₃O₄Na (M+Na)⁺: 468.1894, Found: 468.1841; IR (KBr, v_{max}/cm^{-1}) = 3427 (NH), 3292 (NH), 3201 (NH), 1693 (CON), 1637 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/EtOH/Et₂NH = 95/5/0.05): T_r 54 min.

7.3. Cbz-D-Phe-L-Phe-NH₂ 15aDaL

Yield: 123 mg (92%); colorless powder; >99% de; $[\alpha]_D^{27} = -25.7$ (*c* 0.99, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/EtOH/Et₂NH = 95/5/0.05): *T*_r 41 min.

7.4. Cbz-D-Phe-D-Phe-NH₂ 15aDaD

Yield: 119 mg (89%); colorless powder; >99% de; $[\alpha]_D^{26} = +11.1$ (*c* 1.01, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/EtOH/Et₂NH = 95/5/0.05): *T*_r 50 min.

8. Typical procedure of the primary amidation of Cbz-L-Phe-L-Phe-OH 14aLaL with NH₄Cl

To a colorless solution of 134 mg (0.30 mmol) of Cbz-L-Phe-L-Phe-OH (**14aLaL**) in 6 mL of anhydrous THF were added dropwise at -15 °C 126 μ L (0.9 mmol, 3.0 equiv) of a precooled Et₃N and 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the colorless suspension. The mixture was stirred for 24 h at -15 °C and 15mL of H₂O was added dropwise at -15 °C to the resulted mixture. The suspension was extracted with 100 mL of EtOAc, washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 1:1 mixture of hexane and EtOAc to afford 96 mg (85% yield) of Cbz-L-Phe-L-Phe-NH₂ **15aLaL**.

8.1. Cbz-L-Phe-L-Phe-NH₂ 15aLaL

Yield: 112 mg (84%); colorless powder; >99% de; mp: 234-235 °C; $[\alpha]_D^{27} = -4.1$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.67$ (dd, J = 10.7, 13.8, 1H, $CH_AC_6H_5$), 2.84 (dd, J = 8.7, 13.7, 1H, $CH_AC_6H_5$),

2.92 (dd, $J = 3.9, 13.7, 1H, CH_BC_6H_5$), 3.01 (dd, $J = 5.1, 13.8, 1H, CH_BC_6H_5$), 4.19-4.25 (m, 1H, CHCO), 4.43-4.49 (m, 1H, CHNHCO₂), 4.93 (s, 2H, OCH₂C₆H₅), 7.13 (brs, 1H, NH_A), 7.16-7.35 (m, 15H, C₆H₅×3), 7.41 (brs, 1H, NH_B), 7.51 (d, J = 8.7, 1H, NHCO), 8.05 (d, $J = 8.2, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 37.4, 37.7, 53.7, 56.2, 65.2, 126.3, 127.4, 127.7, 128.0, 128.3, 129.2, 129.3, 137.0, 137.7,$ 138.1, 155.7, 171.2, 172.6; HRMS (ESI-TOF): Calcd for C₂₆H₂₅N₃O₄Na (M+Na)⁺: 468.1894, Found: $468.1841; IR (KBr, <math>v_{max}$ /cm⁻¹) = 3375 (NH), 3319 (NH), 3213 (NH), 1695 (CON), 1643 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/EtOH/Et₂NH = 95/5/0.05): T_r 35 min.

8.2. Cbz-L-Phe-D-Phe-NH₂ 15aLaD

Yield: 120 mg (90%); colorless powder; >99% de; mp: 201-203 °C; $[\alpha]_D^{27} = +17.4$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.36$ (dd, J = 10.7, 13.6, 1H, $CH_AC_6H_5$), 2.54 (dd, J = 3.5, 13.6, 1H, $CH_AC_6H_5$), 2.68 (dd, J = 10.1, 13.6, 1H, $CH_BC_6H_5$), 2.96 (dd, J = 4.3, 13.6, 1H, $CH_BC_6H_5$), 4.12-4.18 (m, 1H, CHCO), 4.39-4.45 (m, 1H, CHNHCO₂), 4.83 (s, 2H, OCH₂C₆H₅), 7.07-7.23 (m, 16H, NH_A, C₆H₅×3), 7.36 (d, J = 8.5, 1H, NHCO), 7.39 (brs, 1H, NH_B), 8.28 (d, J = 8.7, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4$, 37.8, 53.6, 56.2, 65.2, 126.2, 126.3, 127.5, 127.7, 128.0, 128.0, 128.3, 129.2, 129.3, 137.0, 137.9, 138.1, 155.9, 171.2, 173.0; HRMS (ESI-TOF): Calcd for C₂₆H₂₅N₃O₄Na (M+Na)⁺: 468.1894, Found: 468.1841; IR (KBr, v_{max}/cm^{-1}) = 3427 (NH), 3292 (NH), 3201 (NH), 1693 (CON), 1637 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/EtOH/Et₂NH = 95/5/0.05): T_r 54 min.

8.3. Boc-L-Phe-L-Phe-NH₂ 15'aLaL

Yield: 105 mg (85%); colorless powder; 81% de; mp: 200-201 °C; $[\alpha]_D^{26} = -4.2$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.28$ (s, 9H, (CH₃)₃C), 2.65 (dd, *J* = 10.4, 13.7, 1H, *CH*_AC₆H₅), 2.82-2.87 (m, 2H, *CH*_A·C₆H₅, *CH*_BC₆H₅), 3.01 (dd, *J* = 5.0, 13.7, 1H, *CH*_B·C₆H₅), 4.06-4.11 (m, 1H, CHCO), 4.43-4.48 (m, 1H, *CH*NHCO₂), 6.95 (d, *J* = 8.5, 1H, NHCO), 7.11 (brs, 1H, NH_A), 7.15-7.26 (m, 10H, C₆H₅×2), 7.38 (brs, 1H, NH_B), 7.88 (d, *J* = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 28.1$, 37.4, 37.7, 53.5, 56.0, 78.2, 126.1, 126.2, 128.0, 128.0, 129.1, 129.3, 137.7, 138.1, 155.1, 171.2, 172.6; HRMS (ESI-TOF): Calcd for C₂₃H₂₉N₃O₄Na (M+Na)⁺: 434.2050, Found: 434.2096; IR (KBr, *v*_{max}/cm⁻¹) = 3381 (NH), 3336 (NH), 3309 (NH), 3213 (NH), 1687 (CON), 1653 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 80/20): *T*_r 8 min.

8.4. Boc-L-Phe-D-Phe-NH₂ 15'aLaD

Yield: 116 mg (94%); colorless powder; >99% de; mp: 185-186 °C; $[\alpha]_D^{26} = +24.3$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.29$ (s, 9H, (CH₃)₃C), 2.64 (dd, *J* = 10.2, 13.7, 1H, CH_AC₆H₅), 2.82-2.87 (m, 2H, CH_A·C₆H₅, CH_BC₆H₅), 3.01 (dd, *J* = 5.0, 13.7, 1H, CH_B·C₆H₅), 4.05-4.11 (m, 1H, CHCO), 4.43-4.48 (m, 1H, CHNHCO₂), 6.97 (d, *J* = 8.4, 1H, NHCO), 7.13 (brs, 1H, NH_A), 7.16-7.27 (m, 10H, C₆H₅×2), 7.40 (brs, 1H, NH_B), 7.89 (d, *J* = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 28.1$, 37.2, 37.6, 53.7, 56.0, 78.1, 126.1, 126.3, 127.9, 128.0, 129.2, 129.2, 138.0, 138.1, 155.4, 171.4, 172.9; HRMS (ESI-TOF): Calcd for C₂₃H₂₉N₃O₄Na (M+Na)⁺: 434.2050, Found: 434.2096; IR (KBr, *v*_{max}/cm⁻¹) = 3381 (NH), 3344 (NH), 3311 (NH), 3209 (NH), 1683 (CON), 1654 (CON), 1644 (CON). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 80/20): *T*_r 9 min.

8.5. Fmoc-L-Phe-L-Phe-NH₂ 15"aLaL

Yield: 144 mg (90%); colorless powder; 96% de; mp: 231-233 °C; $[\alpha]_D^{26} = -7.1$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.71$ (dd, $J = 10.6, 13.6, 1H, CH_AC_6H_5$), 2.84 (dd, $J = 8.6, 13.6, 1H, CH_AC_6H_5$), 2.93 (dd, $J = 3.8, 13.6, 1H, CH_BC_6H_5$), 3.00 (dd, $J = 5.0, 13.6, 1H, CH_BC_6H_5$), 4.08-4.24 (m, 4H, CHCO, CHCH₂O), 4.46-4.49 (m, 1H, CHNHCO₂), 7.16-7.89 (m, 21H, C₆H₅×2, fluorenyl H, NHCO, NH₂), 8.05 (d, $J = 8.2, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4, 37.7, 46.5, 53.6, 56.2, 65.7, 120.1, 125.2, 125.3, 126.2, 127.1, 127.6, 128.0, 129.2, 129.2, 137.7, 138.1, 140.6, 143.7, 143.7, 155.7, 171.2, 172.6; HRMS (ESI-TOF): Calcd for C₃₃H₃₁N₃O₄Na (M+Na)⁺: 556.2207, Found: 556.2179; IR (KBr, <math>v_{max}/cm^{-1}$) = 3367 (NH), 3294 (NH), 3197 (NH), 1695 (CON), 1670 (CON), 1652 (CON).

8.6. Fmoc-L-Phe-D-Phe-NH₂ 15"aLaD

Yield: 152 mg (95%); colorless powder; >99% de; mp: 219-221 °C; $[\alpha]_D^{27} = +12.9$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.53$ (dd, J = 10.7, 13.6, 1H, CH_AC₆H₅), 2.63 (dd, J = 3.4, 13.5, 1H, CH_A·C₆H₅), 2.76 (dd, J = 10.2, 13.6, 1H, CH_BC₆H₅), 3.04 (dd, J = 4.3, 13.5, 1H, CH_B·C₆H₅), 4.07-4.25 (m, 4H, CHCO, CHCH₂O), 4.49-4.53 (m, 1H, CHNHCO₂), 7.15-7.87 (m, 21H, C₆H₅×2, fluorenyl H, NHCO, NH₂), 8.38 (d, J = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4, 37.9, 46.5, 53.6, 56.1, 65.7, 120.1, 125.3, 125.3, 126.2, 126.3, 127.0, 127.6, 128.0, 129.2, 129.3, 137.9, 138.1, 140.7, 143.7, 143.8, 155.8, 171.2, 172.9; HRMS (ESI-TOF): Calcd for C₃₃H₃₁N₃O₄Na (M+Na)⁺: 556.2207, Found: 556.2179; IR (KBr, <math>\nu_{max}$ /cm⁻¹) = 3284 (NH), 3201 (NH), 1695 (CON), 1647 (CON).

8.7. Cbz-L-Phe-L-Ala-NH₂ 15aLbL

Yield: 99 mg (89%); colorless powder; 84% de; mp: 211-212 °C; $[\alpha]_D^{27} = +19.9$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.22$ (d, *J* = 7.1, 3H, *CH*₃CH), 2.71 (dd, *J* = 10.9, 13.7, 1H, *CH*₄C₆H₅), 3.03 (dd, *J* = 3.7, 13.7, 1H, *CH*_BC₆H₅), 4.18-4.29 (m, 2H, CHCO, *CH*NHCO₂), 4.93 (s, 2H, OCH₂C₆H₅), 7.04 (brs, 1H, NH_A), 7.20-7.35 (m, 11H, NH_B, C₆H₅×2), 7.54 (d, *J* = 8.6, 1H, NHCO), 8.07 (d, *J* = 7.5, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.5$, 37.3, 48.0, 56.1, 65.2, 126.2, 127.4, 127.7, 128.0, 128.3, 129.2, 137.0, 138.2, 155.9, 171.0, 174.0; HRMS (ESI-TOF): Calcd for C₂₀H₂₃N₃O₄Na (M+Na)⁺: 392.1581, Found: 392.1606; IR (KBr, v_{max}/cm⁻¹) = 3381 (NH), 3321 (NH), 3292 (NH), 1691 (CON), 1647 (CON).

8.8. Cbz-L-Phe-D-Ala-NH₂ 15aLbD

Yield: 84 mg (76%); colorless powder; >99% de; mp: 196-198 °C; $[\alpha]_D^{27} = -4.8$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.12$ (d, *J* = 7.1, 3H, *CH*₃CH), 2.75 (dd, *J* = 9.9, 13.5, 1H, *CH*₄C₆H₅), 2.94 (dd, *J* = 5.0, 13.5, 1H, *CH*_BC₆H₅), 4.17-4.28 (m, 2H, CHCO, *CH*NHCO₂), 4.95 (s, 2H, OCH₂C₆H₅), 7.08 (brs, 1H, NH_A), 7.19-7.35 (m, 11H, NH_B, C₆H₅×2), 7.58 (d, *J* = 8.1, 1H, NHCO), 8.15 (d, *J* = 7.7, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.2$, 37.4, 47.8, 56.2, 65.3, 126.2, 127.5, 127.7, 128.0, 128.3, 129.3, 136.9, 137.9, 155.9, 170.9, 174.0; HRMS (ESI-TOF): Calcd for C₂₀H₂₃N₃O₄Na (M+Na)⁺: 392.1581, Found: 392.1606; IR (KBr, ν_{max} /cm⁻¹) = 3429 (NH), 3290 (NH), 3209 (NH), 1691 (CON), 1670 (CON), 1633 (CON).

8.9. Cbz-L-Phe-L-Val-NH₂ 15aLcL

Yield: 111 mg (93%); colorless powder; >99% de; mp: 242-243 °C; $[\alpha]_D^{27} = +19.5$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.84$, 0.86 (d, d, $J = 7.0, 8.0, 3H, 3H, (CH_3)_2CH$), 1.92-2.01 (m, 1H, (CH₃)₂CH), 2.74 (dd, $J = 11.0, 13.8, 1H, CH_AC_6H_5$), 3.03 (dd, $J = 3.8, 13.8, 1H, CH_BC_6H_5$), 4.14-4.18 (m, 1H, CHCO), 4.29-4.35 (m, 1H, CHNHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.08 (brs, 1H, NH_A), 7.18-7.34 (m, 10H, C₆H₅×2), 7.38 (brs, 1H, NH_B), 7.57 (d, J = 8.6, 1H, NHCO), 7.78 (d, $J = 9.0, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.8, 19.2, 30.7, 37.2, 56.2, 57.3, 65.2, 126.2, 127.4, 127.6, 128.0, 128.3, 129.2, 137.0, 138.1, 155.8, 171.3, 172.7; HRMS (ESI-TOF): Calcd for C₂₂H₂₇N₃O₄Na (M+Na)⁺: 420.1894, Found: 420.1867; IR (KBr, <math>\nu_{max}$ /cm⁻¹) = 3400 (NH), 3294 (NH), 3207 (NH), 1685 (CON), 1678 (CON).

8.10. Cbz-L-Phe-D-Val-NH₂ 15aLcD

Yield: 107 mg (90%); colorless powder; >99% de; mp: 233-236 °C; $[\alpha]_D^{27} = -25.0$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.76$ (d, J = 6.8, 6H, (CH₃)₂CH), 1.91-1.99 (m, 1H, (CH₃)₂CH), 2.75 (dd, J = 10.5, 13.5, 1H, CH_AC₆H₅), 2.96 (dd, J = 4.6, 13.5, 1H, CH_BC₆H₅), 4.12-4.16 (m, 1H, CHCO), 4.38-4.41

(m, 1H, CHNHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.10 (brs, 1H, NH_A), 7.19-7.35 (m, 10H, C₆H₅×2), 7.40 (brs, 1H, NH_B), 7.58 (d, J = 8.4, 1H, NHCO), 8.01 (d, J = 9.1, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 17.7$, 19.2, 30.4, 37.7, 56.2, 57.1, 65.2, 126.2, 127.5, 127.7, 128.0, 128.3, 129.3, 137.0, 137.9, 155.9, 171.4, 172.8; HRMS (ESI-TOF): Calcd for C₂₂H₂₇N₃O₄Na (M+Na)⁺: 420.1894, Found: 420.1867; IR (KBr, v_{max}/cm^{-1}) = 3367 (NH), 3323 (NH), 3290 (NH), 3199 (NH), 1687 (CON), 1645 (CON).

8.11. Cbz-L-Phe-L-Met-NH₂ 15aLdL

Yield: 122 mg (94%); colorless powder; >99% de; mp: 214-216 °C; $[\alpha]_D^{27} = +9.4$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.74$ -2.20 (m, 2H, *CH*₂CH₂S), 2.03 (s, 3H, *CH*₃S), 2.33-2.44 (m, 2H, CH₂CH₂S), 2.74 (dd, *J* = 10.5, 13.7, 1H, *CH*_AC₆H₅), 3.02 (dd, *J* = 4.1, 13.7, 1H, *CH*_BC₆H₅), 4.24-4.31 (m, 2H, CHCO, *CH*NHCO₂), 4.95 (s, 2H, OCH₂C₆H₅), 7.10 (brs, 1H, NH_A), 7.18-7.35 (m, 11H, NH_B, C₆H₅×2), 7.55 (d, *J* = 8.5, 1H, NHCO), 8.07 (d, *J* = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.7$, 29.5, 32.0, 37.2, 51.7, 56.2, 65.2, 126.3, 127.4, 127.7, 128.0, 128.3, 129.2, 137.0, 138.1, 155.9, 171.4, 172.9; HRMS (ESI-TOF): Calcd for C₂₂H₂₇N₃O₄SNa (M+Na)⁺: 452.1614, Found: 452.1674; IR (KBr, v_{max}/cm^{-1}) = 3373 (NH), 3327 (NH), 3309 (NH), 3197 (NH), 1693 (CON), 1647 (CON), 1623 (CON).

8.12. Cbz-L-Phe-D-Met-NH₂ 15aLdD

Yield: 128 mg (99%); colorless powder; >99% de; mp: 191-193 °C; $[\alpha]_D^{27} = +27.7$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.64$ -1.90 (m, 2H, *CH*₂CH₂S), 1.98 (s, 3H, *CH*₃S), 2.13-2.19 (m, 2H, CH₂CH₂S), 2.78 (dd, *J* = 9.1, 13.5, 1H, *CH*_AC₆H₅), 2.92 (dd, *J* = 6.4, 13.5, 1H, *CH*_BC₆H₅), 4.19-4.29 (m, 2H, CHCO, *CH*NHCO₂), 4.96 (s, 2H, OCH₂C₆H₅), 7.15 (brs, 1H, NH_A), 7.18-7.37 (m, 11H, NH_B, C₆H₅×2), 7.65 (d, *J* = 7.5, 1H, NHCO), 8.24 (d, *J* = 8.3, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.5$, 29.5, 31.4, 37.4, 51.5, 56.4, 65.4, 126.3, 127.6, 127.8, 128.0, 128.3, 129.2, 136.9, 137.6, 160.0, 171.4, 173.1; HRMS (ESI-TOF): Calcd for C₂₂H₂₇N₃O₄SNa (M+Na)⁺: 452.1614, Found: 452.1674; IR (KBr, ν_{max}/cm^{-1}) = 3421 (NH), 3290 (NH), 3205 (NH), 1695 (CON), 1670 (CON), 1635 (CON).

8.13. Cbz-L-Phe-L-Phg-NH₂ 15aLeL

Yield: 120 mg (93%); colorless powder; >99% de; mp: 192-193 °C; $[\alpha]_D^{27} = +24.2$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.74$ (dd, J = 11.2, 13.6, 1H, $CH_AC_6H_5$), 3.03 (dd, J = 3.6, 13.6, 1H, $CH_BC_6H_5$), 4.36-4.42 (m, 1H, $CHNHCO_2$), 4.94 (s, 2H, $OCH_2C_6H_5$), 5.39 (d, J = 7.8, 1H, CHC_6H_5), 7.18-7.46 (m, 16H, NH_A, $C_6H_5 \times 3$), 7.63 (d, J = 8.8, 1H, NHCO₂), 7.73 (brs, 1H, NH_B), 8.51 (d, J = 7.8, 1H, NHCHC₆H₅); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.3$, 56.0, 56.1, 65.2, 126.2, 126.8, 127.0, 127.4,

127.5, 127.7, 127.9, 128.0, 128.3, 128.3, 129.2, 137.0, 138.1, 138.9, 155.9, 171.0, 171.4; HRMS (ESI-TOF): Calcd for $C_{25}H_{25}N_3O_4Na$ (M+Na)⁺: 454.1737, Found: 454.1748; IR (KBr, v_{max}/cm^{-1}) = 3392 (NH), 3309 (NH), 3209 (NH), 1676 (CON), 1653 (CON), 1637 (CON).

8.14. Cbz-L-Phe-D-Phg-NH₂ 15aLeD

Yield: 108 mg (84%); colorless powder; >99% de; mp: 243-244 °C; $[\alpha]_D^{27} = -30.0$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.68$ (dd, *J* = 10.8, 13.6, 1H, $CH_AC_6H_5$), 2.95 (dd, *J* = 4.4, 13.6, 1H, $CH_BC_6H_5$), 4.40-4.46 (m, 1H, $CHNHCO_2$), 4.95 (s, 2H, $OCH_2C_6H_5$), 5.42 (d, *J* = 8.0, 1H, CHC_6H_5), 7.15-7.37 (m, 16H, NH_A, $C_6H_5 \times 3$), 7.57 (d, *J* = 8.6, 1H, NHCO₂), 7.74 (brs, 1H, NH_B), 8.68 (d, *J* = 8.0, 1H, $NHCHC_6H_5$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4$, 55.8, 56.0, 65.2, 126.2, 126.8, 127.3, 127.4, 127.7, 127.9, 128.2, 128.3, 128.3, 129.3, 137.0, 137.9, 139.1, 155.9, 171.0, 171.4; HRMS (ESI-TOF): Calcd for $C_{25}H_{25}N_3O_4Na$ (M+Na)⁺: 454.1737, Found: 454.1748; IR (KBr, v_{max}/cm^{-1}) = 3448 (NH), 3315 (NH), 3301 (NH), 1672 (CON), 1635 (CON).

8.15. Cbz-L-Phe-L-Ser-NH₂ 15aLfL

Yield: 93 mg (80%); colorless powder; 70% de; mp: 168-169 °C; $[\alpha]_D^{27} = +17.2$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.73$ (dd, $J = 11.0, 13.7, 1H, CH_AC_6H_5$), 3.06 (dd, $J = 3.7, 13.7, 1H, CH_BC_6H_5$), 3.51-3.65 (m, 2H, CH₂OH), 4.20-4.24 (m, 1H, CHCH₂OH), 4.29-4.35 (m, 1H, CHNHCO₂), 4.83-4.98 (m, 3H, CH₂OH, OCH₂C₆H₅), 7.12 (brs, 1H, NH_A), 7.20-7.33 (m, 11H, NH_B, C₆H₅×2), 7.55 (d, J = 8.6, 1H, NHCO), 7.99 (d, $J = 7.8, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4, 55.0, 56.2, 61.7, 65.2, 126.2, 127.4, 127.7, 128.0, 128.3, 129.2, 137.0, 138.1, 155.9, 171.4, 171.8; HRMS (ESI-TOF): Calcd for C₂₀H₂₃N₃O₅Na (M+Na)⁺: 408.1530, Found: 408.1506; IR (KBr, <math>\nu_{max}/cm^{-1}$) = 3481 (NH), 3334 (NH), 3298 (NH), 1732 (CON), 1639 (CON).

8.16. Cbz-L-Phe-D-Ser-NH₂ 15aLfD

Yield: 103 mg (89%); colorless powder; 95% de; mp: 128-130 °C; $[\alpha]_D^{27} = -13.2$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.75$ (dd, J = 10.5, 13.7, 1H, $CH_AC_6H_5$), 3.01 (dd, J = 4.3, 13.7, 1H, $CH_BC_6H_5$), 3.47-3.60 (m, 2H, CH_2OH), 4.18-4.23 (m, 1H, $CHCH_2OH$), 4.30-4.36 (m, 1H, $CHNHCO_2$), 4.87-4.98 (m, 3H, CH_2OH , $OCH_2C_6H_5$), 7.16 (brs, 1H, NH_A), 7.19-7.35 (m, 11H, NH_B , $C_6H_5 \times 2$), 7.56 (d, J = 8.3, 1H, NHCO), 8.06 (d, J = 8.2, 1H, $NHCO_2$); ¹³C NMR (100 MHz, $DMSO-d^6$): $\delta = 37.3$, 54.9, 56.2, 61.6, 65.3, 126.2, 127.5, 127.7, 128.0, 128.3, 129.3, 136.9, 138.0, 156.0, 171.4, 171.9; HRMS (ESI-TOF):

Calcd for $C_{20}H_{23}N_3O_5Na$ (M+Na)⁺: 408.1530, Found: 408.1506; IR (KBr, v_{max}/cm^{-1}) = 3404 (NH), 3375 (NH), 3246 (NH), 1703 (CON), 1633 (CON).

9. Typical procedure of the primary amidation of Cbz-L-Ala-L-Ala-OH 14cLbL with NH₄Cl

To a colorless solution of 88 mg (0.30 mmol) of Cbz-L-Ala-L-Ala-OH (**14cLbL**) in 6 mL of anhydrous THF were added dropwise at -15 °C 126 μ L (0.9 mmol, 3.0 equiv) of a precooled Et₃N and 40 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et. After stirring for 10 min at -15 °C, 0.45 mL (0.45mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the colorless suspension. The mixture was stirred for 24 h at -15 °C and 15mL of H₂O was added dropwise at -15 °C to the resulted mixture. The suspension was extracted with 100 mL of EtOAc, washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 1:1 mixture of hexane and EtOAc to afford 96 mg (85% yield) of Cbz-L-Ala-L-Ala-NH₂ **15cLbL**.

9.1. Cbz-L-Ala-L-Ala-NH₂ 15cLbL

Yield: 67 mg (76%); colorless powder; 86% de; mp: 216-217 °C; $[\alpha]_D^{28} = +4.4$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.17$ -1.21 (m, 6H, *CH*₃CH×2), 4.00-4.07 (m, 1H, CHCO), 4.15-4.22 (m, 1H, *CH*NHCO₂), 5.02 (s, 2H, OC*H*₂C₆H₅), 7.00 (brs, 1H, NH_A), 7.28 (brs, 1H, NH_B), 7.29-7.39 (m, 5H, C₆H₅), 7.48 (d, *J* = 7.3, 1H, NHCO), 7.83 (d, *J* = 7.5, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.0$, 18.4, 47.8, 50.1, 65.4, 127.7, 127.7, 128.3, 137.0, 155.7, 171.9, 174.0; HRMS (ESI-TOF): Calcd for C₁₄H₁₉N₃O₄Na (M+Na)⁺: 316.1268, Found: 316.1261; IR (KBr, *v*_{max}/cm⁻¹) = 3392 (NH), 3307 (NH), 3276 (NH), 1684 (CON), 1645 (CON).

9.2. Cbz-L-Ala-D-Ala-NH₂ 15cLbD

Yield: 76 mg (86%); colorless powder; 90% de; mp: 215-216 °C; $[\alpha]_D^{28} = +7.5$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.18$ -1.20 (m, 6H, *CH*₃CH×2), 4.01-4.08 (m, 1H, CHCO), 4.14-4.21 (m, 1H, *CH*NHCO₂), 5.02 (s, 2H, OCH₂C₆H₅), 7.06 (brs, 1H, NH_A), 7.24 (brs, 1H, NH_B), 7.31-7.37 (m, 5H, C₆H₅), 7.51 (d, *J* = 7.0, 1H, NHCO), 8.01 (d, *J* = 7.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.9$, 18.2, 47.9, 50.1, 65.4, 127.7, 127.8, 128.3, 155.8, 172.0, 174.1; HRMS (ESI-TOF): Calcd for C₁₄H₁₉N₃O₄Na (M+Na)⁺: 316.1268, Found: 316.1261; IR (KBr, v_{max}/cm^{-1}) = 3390 (NH), 3311 (NH), 3282 (NH), 1674 (CON), 1637 (CON).

9.3. Cbz-L-Ala-L-Val-NH₂ 15cLcL

Yield: 82 mg (85%); colorless powder; >99% de; mp: 258-259 °C; $[\alpha]_D^{28} = -3.1$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.82$, 0.84 (d, d, *J* = 6.9, 6.9, 3H, 3H, (CH₃)₂CH), 1.20 (d, *J* = 7.0, 3H, CH₃CH), 1.91-1.96 (m, 1H, CH(CH₃)₂), 4.10-4.14 (m, 2H, CHCO, CHNHCO₂), 5.02 (s, 2H, OCH₂C₆H₅), 7.05 (brs, 1H, NH_A), 7.40 (brs, 1H, NH_B), 7.35-7.58 (m, 7H, C₆H₅, NHCO, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.8$, 18.0, 19.2, 30.7, 50.2, 57.1, 65.4, 127.7, 127.7, 128.3, 137.0, 155.6, 172.2, 172.7; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₃O₄Na (M+Na)⁺: 344.1581, Found: 344.1584; IR (KBr, *v*_{max}/cm⁻¹) = 3392 (NH), 3309 (NH), 3280 (NH), 1684 (CON), 1645 (CON).

9.4. Cbz-L-Ala-D-Val-NH₂ 15cLcD

Yield: 95 mg (99%); colorless powder; >99% de; mp: 197-199 °C; $[\alpha]_D^{28} = +0.4$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.79$, 0.83 (d, d, *J* = 6.8, 6.8, 3H, 3H, (CH₃)₂CH), 1.20 (d, *J* = 7.1, 3H, CH₃CH), 1.96-2.00 (m, 1H, CH(CH₃)₂), 4.11-4.16 (m, 2H, CHCO, CHNHCO₂), 5.01 (s, 2H, OCH₂C₆H₅), 7.08 (brs, 1H, NH_A), 7.31-7.38 (m, 6H, NH_B, C₆H₅), 7.48 (d, *J* = 7.4, 1H, NHCO), 7.74 (d, *J* = 9.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.6$, 18.4, 19.3, 30.5, 50.2, 57.0, 65.4, 127.7, 127.8, 128.4, 137.0, 155.7, 172.5, 172.8; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₃O₄Na (M+Na)⁺: 344.1581, Found: 344.1584; IR (KBr, ν_{max}/cm^{-1}) = 3319 (NH), 3276 (NH), 1685 (CON), 1645 (CON).

9.5. Cbz-L-Ala-L-Met-NH₂ 15cLdL

Yield: 90 mg (85%); colorless powder; >99% de; mp: 187-189 °C; $[\alpha]_D^{27} = +1.8$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.20$ (d, J = 7.2, 3H, *CH*₃CH), 1.76-1.97 (m, 2H, *CH*₂CH₂S), 2.02 (s, 3H, *CH*₃S), 2.38-2.45 (m, 2H, *CH*₂*CH*₂S), 4.03-4.06 (m, 1H, *CHCO*), 4.24-4.29 (m, 1H, *CHNHCO*₂), 5.02 (s, 2H, OC*H*₂C₆H₅), 7.09 (brs, 1H, NH_A), 7.32-7.39 (m, 6H, NH_B, C₆H₅), 7.51 (d, J = 7.2, 1H, NHCO), 7.89 (d, J = 8.1, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 17.9, 29.5, 32.0, 50.2, 51.6, 65.4, 127.7, 127.8, 128.3, 137.0, 155.8, 172.4, 173.0; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₃O₄SNa (M+Na)⁺: 376.1301, Found: 376.1338; IR (KBr, ν_{max}/cm^{-1}) = 3313 (NH), 3294 (NH), 1684 (CON), 1674 (CON).

9.6. Cbz-L-Ala-D-Met-NH₂ 15cLdD

Yield: 88 mg (83%); colorless powder; 89% de; mp: 163-164 °C; $[\alpha]_D^{27} = +6.6$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.20$ (d, J = 7.1, 3H, *CH*₃CH), 1.74-1.97 (m, 2H, *CH*₂CH₂S), 2.02 (s, 3H, CH₃S), 2.36-2.42 (m, 2H, CH₂CH₂S), 4.03-4.07 (m, 1H, CHCO), 4.23-4.28 (m, 1H, *CH*NHCO₂), 5.02 (s, 2H, OCH₂C₆H₅), 7.14 (brs, 1H, NH_A), 7.30-7.39 (m, 6H, NH_B, C₆H₅), 7.53 (d, J = 6.8, 1H, NHCO), 8.07 (d, J = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 17.9, 29.6, 31.5, 50.5, 51.5, 65.4, 127.7,

172.8, 128.4, 136.9, 155.8, 172.5, 173.1; HRMS (ESI-TOF): Calcd for $C_{16}H_{23}N_3O_4SNa$ (M+Na)⁺: 376.1301, Found: 376.1338; IR (KBr, v_{max}/cm^{-1}) = 3282 (NH), 3197 (NH), 1689 (CON), 1653 (CON).

9.7. Cbz-L-Val-L-Ala-NH₂ 15bLbL

Yield: 95 mg (99%); colorless powder; >99% de; mp: 237-238 °C; $[\alpha]_D^{26} = +27.2$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.83$, 0.86 (d, d, J = 6.8, 6.8, 3H, 3H, $(CH_3)_2$ CH), 1.20 (d, J = 7.0, 3H, CH₃CH), 1.94-2.03 (m, 1H, CH(CH₃)₂), 3.85-3.89 (m, 1H, CHCO), 4.19-4.26 (m, 1H, CHNHCO₂), 5.03 (s, 2H, OCH₂C₆H₅), 7.00 (brs, 1H, NH_A), 7.30-7.37 (m, 7H, C₆H₅, NH_B, NHCO), 7.88 (d, J = 7.4, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.0$, 18.5, 19.2, 30.3, 46.8, 60.1, 65.4, 127.6, 127.8, 128.3, 137.1, 156.2, 170.6, 174.0; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₃O₄Na (M+Na)⁺: 344.1581, Found: 344.1549; IR (KBr, ν_{max}/cm^{-1}) = 3421 (NH), 3304 (NH), 3207 (NH), 1684 (CON), 1635 (CON).

9.8. Cbz-L-Val-D-Ala-NH₂ 15bLbD

Yield: 93 mg (97%); colorless powder; >99% de; mp: 232-234 °C; $[\alpha]_D^{27} = +11.2$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.84$, 0.86 (d, d, J = 6.7, 6.6, 3H, 3H, $(CH_3)_2$ CH), 1.20 (d, J = 7.1, 3H, CH_3 CH), 1.89-1.97 (m, 1H, $CH(CH_3)_2$), 3.81-3.85 (m, 1H, CHCO), 4.20-4.24 (m, 1H, $CHNHCO_2$), 5.03 (s, 2H, $OCH_2C_6H_5$), 7.06 (brs, 1H, NH_A), 7.26 (brs, 1H, NH_B), 7.31-7.41 (m, 6H, C_6H_5 , NHCO), 8.11 (d, J = 7.7, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.3$, 18.4, 19.1, 30.0, 47.8, 60.5, 65.5, 127.7, 127.8, 128.4, 137.0, 156.3, 170.9, 174.1; HRMS (ESI-TOF): Calcd for $C_{16}H_{23}N_3O_4Na$ (M+Na)⁺: 344.1581, Found: 344.1584; IR (KBr, v_{max}/cm^{-1}) = 3327 (NH), 3278 (NH), 1684 (CON), 1647 (CON).

9.9. Cbz-L-Val-L-Val-NH₂ 15bLcL

Yield: 97 mg (93%); colorless powder; 92% de; mp: 252-253 °C; $[\alpha]_D^{27} = +10.3$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.82-0.86$ (m, 12H, (CH₃)₂CH×2), 1.90-1.99 (m, 2H, CH(CH₃)₂×2), 3.88-3.92 (m, 1H, CHCO), 4.11-4.15 (m, 1H, CHNHCO₂), 5.04 (s, 2H, OCH₂C₆H₅), 7.05 (brs, 1H, NH_A), 7.74 (brs, 1H, NH_B), 7.29-7.45 (m, 6H, C₆H₅, NHCO), 7.63 (d, J = 8.9, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.0$, 18.2, 19.3, 30.1, 30.6, 57.2, 60.5, 65.4, 127.6, 127.7, 128.3, 137.1, 156.1, 171.0, 172.7; HRMS (ESI-TOF): Calcd for C₁₈H₂₇N₃O₄Na (M+Na)⁺: 372.1894, Found: 372.1863; IR (KBr, ν_{max}/cm^{-1}) = 3377 (NH), 3303 (NH), 1674 (CON), 1639 (CON).

9.10. Cbz-L-Val-D-Val-NH₂ 15bLcD

Yield: 99 mg (94%); colorless powder; 72% de; mp: 255-256 °C; $[\alpha]_D^{27} = -12.2$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.81-0.87$ (m, 12H, (CH₃)₂CH×2), 1.92-2.05 (m, 2H, CH(CH₃)₂×2), 3.97-3.99 (m, 1H, CHCO), 4.11-4.14 (m, 1H, CHNHCO₂), 5.02 (s, 2H, OCH₂C₆H₅), 7.08 (brs, 1H, NH_A), 7.30-7.39 (m, 7H, C₆H₅, NH_B, NHCO), 7.87 (d, J = 8.9, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.7$, 18.2, 19.3, 19.4, 30.0, 30.1, 57.3, 60.4, 65.4, 127.7, 127.8, 128.3, 137.0, 156.3, 171.4, 172.9; HRMS (ESI-TOF): Calcd for C₁₈H₂₇N₃O₄Na (M+Na)⁺: 372.1894, Found: 372.1863; IR (KBr, ν_{max} /cm⁻¹) = 3384 (NH), 3317 (NH), 3273 (NH), 1672 (CON), 1641 (CON).

9.11. Cbz-L-Val-L-Met-NH₂ 15bLdL

Yield: 113 mg (99%); colorless powder; >99% de; mp: 242-244 °C; $[\alpha]_D^{28} = +11.7$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.83$, 0.86 (d, d, J = 6.8, 6.8, 6H, (CH₃)₂CH), 1.76-2.00 (m, 3H, (CH₃)₂CH, CH₂CH₂S), 2.02 (s, 3H, CH₃S), 2.37-2.45 (m, 2H, CH₂CH₂S), 3.84-3.88 (m, 1H, CHCO), 4.27-4.33 (m, 1H, CHNHCO₂), 5.03 (s, 2H, OCH₂C₆H₅), 7.07 (brs, 1H, NH_A), 7.24-7.39 (m, 7H, NH_B, C₆H₅, NHCO), 7.90 (d, J = 7.9, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 18.1, 19.2, 29.5, 30.0, 31.9, 51.5, 60.4, 65.4, 127.6, 127.7, 128.3, 137.0, 156.2, 171.0, 172.8; HRMS (ESI-TOF): Calcd for C₁₇H₂₅N₃O₄SNa (M+Na)⁺: 404.1614, Found: 404.1645; IR (KBr, $\nu_{max}/cm^{-1}) = 3313$ (NH), 3282 (NH), 1674 (CON), 1637 (CON).

9.12. Cbz-L-Val-D-Met-NH₂ 15bLdD

Yield: 105 mg (92%); colorless powder; 89% de; mp: 225-227 °C; $[\alpha]_D^{27} = +33.2$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.85$, 0.86 (d, d, J = 6.5, 5.8, 6H, (CH₃)₂CH), 1.75-1.81 (m, 1H, (CH₃)₂CH), 1.90-1.98 (m, 2H, CH₂CH₂S), 2.01 (s, 3H, CH₃S), 2.38-2.50 (m, 2H, CH₂CH₂S), 3.79-3.83 (m, 1H, CHCO), 4.25-4.30 (m, 1H, CHNHCO₂), 5.02 (s, 2H, OCH₂C₆H₅), 7.12 (brs, 1H, NH_A), 7.26 (brs, 1H, NH_B), 7.24-7.37 (m, 5H, C₆H₅), 7.44 (d, J = 7.9, 1H, NHCO), 8.22 (d, J = 8.1, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.5$, 18.5, 19.1, 29.7, 31.1, 51.4, 60.7, 65.5, 127.8, 127.8, 128.4, 136.9, 156.4, 171.5, 173.2; HRMS (ESI-TOF): Calcd for C₁₇H₂₅N₃O₄SNa (M+Na)⁺: 404.1614, Found: 404.1645; IR (KBr, $\nu_{max}/cm^{-1}) = 3402$ (NH), 3323 (NH), 3275 (NH), 1672 (CON), 1645 (CON).

9.13. Cbz-L-Met-L-Ala-NH₂ 15dLbL

Yield: 103 mg (97%); colorless powder; 94% de; mp: 223-224 °C; $[\alpha]_D^{27} = +12.3$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.21$ (d, J = 7.0, 3H, CH₃CH), 1.76-1.91 (m, 2H, CH₂CH₂S), 2.03 (s, 3H, CH₃S), 2.45-2.51 (m, 2H, CH₂CH₂S), 4.06-4.12 (m, 1H, CHCO), 4.18-4.22 (m, 1H, CHNHCO₂), 5.03 (s,

2H, OC $H_2C_6H_5$), 7.02 (brs, 1H, NH_A), 7.25-7.39 (m, 6H, NH_B, C₆H₅), 7.54 (d, J = 10.0, 1H, NHCO), 7.93 (d, $J = 7.4, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO- d^6): $\delta = 14.6, 18.4, 29.6, 31.7, 47.9, 53.9, 65.4, 127.6, 127.8, 128.3, 137.0, 156.0, 170.9, 174.0; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₃O₄SNa (M+Na)⁺: 376.1301, Found: 376.1338; IR (KBr, <math>v_{max}/cm^{-1}$) = 3392 (NH), 3317 (NH), 1672 (CON), 1637 (CON).

9.14. Cbz-L-Met-D-Ala-NH₂ 15dLbD

Yield: 103 mg (97%); colorless powder; 76% de; mp: 233-234 °C; $[\alpha]_D^{27} = +4.6$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.20$ (d, J = 7.1, 3H, *CH*₃CH), 1.75-1.91 (m, 2H, *CH*₂CH₂S), 2.02 (s, 3H, *CH*₃S), 2.37-2.45 (m, 2H, *CH*₂C*H*₂S), 4.10-4.11 (m, 1H, CHCO), 4.16-4.23 (m, 1H, *CH*NHCO₂), 5.03 (s, 2H, OC*H*₂C₆H₅), 7.08 (brs, 1H, NH_A), 7.27 (brs, 1H, NH_B), 7.25-7.39 (m, 5H, C₆H₅), 7.57 (d, J = 7.7, 1H, NHCO), 8.06 (d, J = 7.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 18.3, 29.6, 31.4, 47.9, 54.0, 65.5, 127.7, 127.8, 128.4, 136.9, 156.1, 171.0, 174.0; HRMS (ESI-TOF): Calcd for C₁₆H₂₃N₃O₄SNa (M+Na)⁺: 376.1301, Found: 376.1338; IR (KBr, v_{max}/cm^{-1}) = 3384 (NH), 3309 (NH), 1684 (CON), 1637 (CON).

9.15. Cbz-L-Met-L-Val-NH₂ 15dLcL

Yield: 98 mg (86%); colorless powder; >99% de; mp: 231-232 °C; $[\alpha]_D^{27} = +0.5$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.82$, 0.84 (d, d, J = 6.8, 6.7, 6H, (*CH*₃)₂CH), 1.78-1.96 (m, 3H, (*CH*₃)₂CH, *CH*₂CH₂S), 2.02 (s, 3H, CH₃S), 2.43-2.47 (m, 2H, CH₂CH₂S), 4.10-4.16 (m, 2H, CHCO, *CH*NHCO₂), 5.03 (s, 2H, OCH₂C₆H₅), 7.07 (brs, 1H, NH_A), 7.43 (brs, 1H, NH_B), 7.31-7.38 (m, 5H, C₆H₅), 7.59 (d, J = 8.2, 1H, NHCO), 7.63 (d, J = 8.9, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 17.8, 19.3, 29.7, 30.7, 31.7, 54.1, 57.2, 65.4, 127.6, 127.8, 128.3, 137.0, 155.9, 171.2, 172.7; HRMS (ESI-TOF): Calcd for C₁₈H₂₇N₃O₄SNa (M+Na)⁺: 404.1614, Found: 404.1645; IR (KBr, ν_{max}/cm^{-1}) = 3298 (NH), 3209 (NH), 1680 (CON), 1643 (CON).

9.16. Cbz-L-Met-D-Val-NH₂ 15dLcD

Yield: 96 mg (84%); colorless powder; >99% de; mp: 244-246 °C; $[\alpha]_D^{27} = +9.8$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.80$, 0.83 (d, d, J = 6.8, 6.8, 6H, (*CH*₃)₂CH), 1.76-2.02 (m, 3H, (*CH*₃)₂CH, *CH*₂CH₂S), 2.02 (s, 3H, CH₃S), 2.43-2.48 (m, 2H, CH₂CH₂S), 4.14-4.21 (m, 2H, CHCO, *CH*NHCO₂), 5.03 (s, 2H, OCH₂C₆H₅), 7.09 (brs, 1H, NH_A), 7.30-7.37 (m, 6H, C₆H₅, NH_B), 7.54 (d, J = 7.9, 1H, NHCO), 7.79 (d, J = 9.0, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 17.6, 19.3, 29.7, 30.4, 31.8, 54.1, 57.1, 65.4, 127.7, 127.8, 128.3, 136.9, 156.0, 171.4, 172.7; HRMS (ESI-TOF): Calcd for C₁₈H₂₇N₃O₄SNa

 $(M+Na)^+$: 404.1614, Found: 404.1645; IR (KBr, v_{max}/cm^{-1}) = 3338 (NH), 3286 (NH), 1734 (CON), 1641 (CON).

9.17. Cbz-L-Met-L-Met-NH₂ 15dLdL

Yield: 95 mg (77%); colorless powder; 97% de; mp: 195-197 °C; $[\alpha]_D^{28} = -1.9$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.77$ -1.98 (m, 4H, CH₂CH₂S×2), 2.03 (s, 6H, CH₃S×2), 2.39-2.49 (m, 4H, CH₂CH₂S×2), 4.08-4.12 (m, 1H, CHCO), 4.25-4.30 (m, 1H, CHNHCO₂), 5.03 (s, 2H, OCH₂C₆H₅), 7.09 (brs, 1H, NH_A), 7.31-7.39 (m, 6H, C₆H₅, NH_B), 7.55 (d, J = 7.8, 1H, NHCO), 7.95 (d, J = 8.0, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 29.5, 29.6, 31.5, 31.9, 51.7, 54.0, 65.5, 127.7, 127.8, 128.3, 136.9, 156.0, 171.3, 172.9; HRMS (ESI-TOF): Calcd for C₁₈H₂₇N₃O₄S₂Na (M+Na)⁺: 436.1335, Found: 436.1365; IR (KBr, ν_{max} /cm⁻¹) = 3305 (NH), 3282 (NH), 1693 (CON), 1647 (CON).

9.18. Cbz-L-Met-D-Met-NH₂ 15dLdD

Yield: 112 mg (90%); colorless powder; >99% de; mp: 181-182 °C; $[\alpha]_D^{27} = +20.5$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.75$ -1.88 (m, 4H, CH₂CH₂S×2), 2.02 (s, 6H, CH₃S×2), 2.37-2.47 (m, 4H, CH₂CH₂S×2), 4.10-4.12 (m, 1H, CHCO), 4.24-4.29 (m, 1H, CHNHCO₂), 5.02 (s, 2H, OCH₂C₆H₅), 7.14 (brs, 1H, NH_A), 7.28 (brs, 1H, NH_B), 7.30-7.39 (m, 5H, C₆H₅), 7.59 (d, J = 7.3, 1H, NHCO), 8.16 (d, J = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.6$, 29.6, 29.6, 31.4, 31.9, 51.5, 54.1, 65.5, 127.7, 127.8, 128.4, 136.9, 156.1, 171.5, 173.0; HRMS (ESI-TOF): Calcd for C₁₈H₂₇N₃O₄S₂Na (M+Na)⁺: 436.1335, Found: 436.1365; IR (KBr, v_{max}/cm^{-1}) = 3307 (NH), 3286 (NH), 1674 (CON), 1639 (CON).

9.19. N-Boc-O-Bn-L-Ser-L-Phe-NH₂ 15hLaL

Yield: 127 mg (96%); colorless powder; 97% de; mp: 121-122 °C; $[\alpha]_D^{27} = +10.0$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.38$ (s, 9H, (CH₃)₃C), 2.83 (dd, $J = 8.7, 13.7, 1H, CH_AC_6H_5$), 3.02 (dd, $J = 4.7, 13.7, 1H, CH_BC_6H_5$), 3.48-3.50 (m, 2H, $CH_2OCH_2C_6H_5$), 4.15-4.18 (m, 1H, CHCO), 4.36-4.62 (m, 3H, $CHNHCO_2$, $OCH_2C_6H_5$), 6.96 (d, J = 7.8, 1H, NHCO), 7.15-7.39 (m, 12H, $C_6H_5 \times 2, NH_2$), 7.93 (d, $J = 8.1, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 28.2, 37.5, 53.5, 54.6, 69.8, 72.0, 78.4, 126.2, 127.4, 127.5, 128.0, 128.2, 129.2, 137.7, 138.1, 155.2, 169.4, 172.5; HRMS (ESI-TOF): Calcd for <math>C_{24}H_{31}N_3O_5Na$ (M+Na)⁺: 464.2156, Found: 464.2163; IR (KBr, v_{max}/cm^{-1}) = 3427 (NH), 3282 (NH), 3197 (NH), 1695 (CON), 1637 (CON).

9.20. N-Boc-O-Bn-L-Ser-D-Phe-NH₂ 15hLaD

Yield: 127 mg (96%); colorless powder; 91% de; mp: 112-113 °C; $[\alpha]_D^{28} = +1.3$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.38$ (s, 9H, (CH₃)₃C), 2.88 (dd, *J* = 9.7, 13.7, 1H, CH_AC₆H₅), 3.04 (dd, *J* = 4.7, 13.7, 1H, CH_BC₆H₅), 3.36-3.39 (m, 2H, CH₂OCH₂C₆H₅), 4.10-4.23 (m, 1H, CHCO), 4.36-4.48 (m, 3H, CHNHCO₂, OCH₂C₆H₅), 6.85 (d, *J* = 7.8, 1H, NHCO), 7.02-7.41 (m, 12H, C₆H₅×2, NH₂), 8.16 (d, *J* = 8.4, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 28.1$, 37.3, 53.8, 54.3, 69.7, 71.8, 78.3, 126.2, 127.3, 127.4, 127.9, 128.0, 128.1, 129.1, 137.9, 138.1, 155.3, 169.6, 172.7; HRMS (ESI-TOF): Calcd for C₂₄H₃₁N₃O₅Na (M+Na)⁺: 464.2156, Found: 464.2163; IR (KBr, *v*_{max}/cm⁻¹) = 3456 (NH), 3365 (NH), 3334 (NH), 1684 (CON), 1637 (CON).

9.21. N^α-Boc-N^ε-Cbz-L-Lys-L-Phe-NH₂ 15mLaL

Yield: 136 mg (86%); colorless powder; 97% de; mp: 120-121 °C; $[\alpha]_D^{27} = -7.0$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.08$ -1.33 (m, 6H, NHCH₂(CH₂)₃), 1.37 (s, 9H, (CH₃)₃C), 2.82 (dd, *J* = 8.9, 13.6, 1H, CH_AC₆H₅), 2.89-2.94 (m, 2H, NHCH₂(CH₂)₃), 2.99 (dd, *J* = 4.6, 13.6, 1H, CH_BC₆H₅), 3.72-3.79 (m, 1H, CHCO), 4.42-4.47 (m, 1H, CHNHCO₂), 5.00 (s, 2H, OCH₂C₆H₅), 6.95 (d, *J* = 7.5, 1H, NHCO), 7.13-7.38 (m, 12H, C₆H₅×2, NH₂), 7.72 (d, *J* = 8.3, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 22.7$, 28.2, 29.1, 31.4, 37.5, 53.2, 55.0, 65.1, 78.2, 126.2, 127.7, 128.0, 128.4, 129.2, 137.3, 137.7, 155.4, 156.1, 171.8, 172.8; HRMS (ESI-TOF): Calcd for C₂₈H₃₈N₄O₆Na (M+Na)⁺: 549.2684, Found: 549.2712; IR (KBr, $\nu_{max}/cm^{-1}) = 3435$ (NH), 3329 (NH), 1695 (CON), 1647 (CON).

9.22. N^a-Boc-N^e-Cbz-L-Lys-D-Phe-NH₂ 15mLaD

Yield: 141 mg (89%); colorless powder; 96% de; mp: 165-167 °C; $[\alpha]_D^{28} = -1.7$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.88-1.28$ (m, 6H, NHCH₂(CH₂)₃), 1.36 (s, 9H, (CH₃)₃C), 2.73 (dd, *J* = 10.8, 13.4, 1H, CH_AC₆H₅), 2.84-2.89 (m, 2H, NHCH₂(CH₂)₃), 3.11 (dd, *J* = 3.7, 13.4, 1H, CH_BC₆H₅), 3.78-3.83 (m, 1H, CHCO), 4.36-4.42 (m, 1H, CHNHCO₂), 5.01 (s, 2H, OCH₂C₆H₅), 6.87 (d, *J* = 7.1, 1H, NHCO), 7.15-7.39 (m, 12H, C₆H₅×2, NH₂), 8.16 (d, *J* = 8.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 22.3, 28.2, 29.1, 31.0, 37.2, 53.8, 54.4, 65.1, 78.1, 126.2, 127.7, 128.0, 128.3, 129.1, 137.3, 138.1, 155.6, 156.0, 172.0, 173.0; HRMS (ESI-TOF): Calcd for C₂₈H₃₈N₄O₆Na (M+Na)⁺: 549.2684, Found: 549.2712; IR (KBr, <math>\nu_{max}/cm^{-1}) = 3334$ (NH), 3195 (NH), 1687 (CON), 1649 (CON).

10. Typical procedure of the amidation of Cbz-L-Phe-L-Phe-OH 14aLaL with 4-aminophenol 16a

To a colorless solution of 134 mg (0.30 mmol, 1 equiv) of Cbz-L-Phe-L-Phe-OH (**14aLaL**) in 6 mL of anhydrous THF were added dropwise at -15 $^{\circ}$ C 126 μ L (0.9 mmol, 3.0 equiv) of a precooled Et₃N and 40

 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et. After stirring for 10 min at -15 °C, 49 mg (0.45 mmol, 1.5 equiv) of 4-aminophenol (**16a**) and 1 mL of H₂O were added at -15 °C to the colorless suspension. The mixture was stirred for 24 h at -15 °C and 15mL of H₂O was added dropwise at -15 °C to the resulted mixture. The suspension was extracted with 100 mL of EtOAc, washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 1:1 mixture of hexane and EtOAc to afford 156 mg (97% yield) of Cbz-L-Phe-L-Phe-4-aminophenol **17aLaLa**.

10.1. Cbz-L-Phe-L-Phe-4-aminophenol 17aLaLa

Yield: 156 mg (97%); colorless powder; 96% de; mp: 219-222 °C; $[\alpha]_D^{27} = +25.3$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.68$ (dd, $J = 10.6, 13.6, 1H, CH_AC_6H_5$), 2.90-2.95 (m, 2H, $CH_AC_6H_5$, $CH_BC_6H_5$), 3.06 (dd, $J = 5.6, 13.6, 1H, CH_BC_6H_5$), 4.25-4.30 (m, 1H, CHCO), 4.63-4.69 (m, 1H, CHNHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 6.70, 7.17-7.35 (d, m, $J = 8.8, 2H, 17H, C_6H_4, C_6H_5 \times 3$), 7.47 (d, J = 8.6, 1H, NHCO), 8.26 (d, $J = 8.0, 1H, NHCO_2$), 9.22 (s, 1H, OH), 9.81 (s, 1H, CONHC₆H₄); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.5, 38.0, 54.6, 56.1, 65.2, 115.1, 121.2, 126.2, 126.4, 127.4, 127.7, 128.0, 128.1, 128.3, 129.2, 129.3, 130.3, 137.0, 137.4, 138.0, 153.5, 155.7, 169.0, 171.3; HRMS (ESI-TOF): Calcd for C₃₂H₃₁N₃O₅Na (M+Na)⁺: 560.2156, Found: 560.2169; IR (KBr, <math>v_{max}/cm^{-1}$) = 3293 (OH), 1695 (CON), 1623 (CON).

10.2. Cbz-L-Phe-D-Phe-4-aminophenol 17aLaDa

Yield: 141 mg (94%); colorless powder; 97% de; mp: 200-202 °C; $[\alpha]_D^{27} = +19.4$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.47$ (dd, J = 10.8, 13.5, 1H, $CH_AC_6H_5$), 2.63 (dd, J = 3.4, 13.5, 1H, $CH_AC_6H_5$), 2.85 (dd, J = 10.0, 13.5, 1H, $CH_BC_6H_5$), 3.07 (dd, J = 4.5, 13.5, 1H, $CH_BC_6H_5$), 4.26-4.31 (m, 1H, CHCO), 4.67-4.73 (m, 1H, CHNHCO₂), 4.92 (s, 2H, OCH₂C₆H₅), 6.72, 7.41 (d, d, J = 8.9, 8.9, 2H, 2H, C₆H₄), 7.17-7.32 (m, 16H, C₆H₅×3, NHCO), 8.58 (d, J = 8.6, 1H, NHCO₂), 9.24 (s, 1H, OH), 9.86 (s, 1H, CONHC₆H₄); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 37.4$, 38.1, 54.5, 56.1, 65.2, 115.1, 121.1, 126.2, 126.4, 127.5, 127.7, 128.0, 128.0, 128.3, 129.2, 129.3, 130.3, 136.9, 137.7, 138.1, 153.5, 155.9, 169.2, 171.4; HRMS (ESI-TOF): Calcd for C₃₂H₃₁N₃O₅Na (M+Na)⁺: 560.2156, Found: 560.2169; IR (KBr, $v_{max}/cm^{-1}) = 3292$ (OH), 1693 (CON), 1645 (CON).

10.3. Cbz-L-Phe-L-Phe-dopamine 17aLaLb

Yield: 171 mg (98%); colorless powder; 82% de; mp: 70-71 °C; $[\alpha]_D^{27} = +11.1$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.43-2.47$ (m, 2H, CH₂CH₂C₆H₃), 2.67 (dd, *J* = 10.9, 13.6, 1H, CH₄C₆H₅), 2.82

(dd, J = 8.5, 13.6, 1H, $CH_A \cdot C_6H_5$), 3.12-3.20 (m, 2H, $CH_B C_6H_5$, $CH_B \cdot C_6H_5$), 3.11-3.23 (m, 2H, $CH_2 CH_2 C_6H_3$), 4.23-4.27 (m, 1H, CHCO), 4.44-4.49 (m, 1H, $CHNHCO_2$), 4.94 (s, 2H, $OCH_2 C_6H_5$), 6.40-6.63 (m, 3H, C_6H_3), 7.17-7.33 (m, 15H, $C_6H_5 \times 3$), 7.46 (d, J = 8.7, 1H, NHCO), 7.95-8.02 (m, 1H, $NHCH_2CH_2$), 8.08 (d, J = 8.2, 1H, $NHCO_2$), 9.65 (s, 1H, OH), 9.74 (s, 1H, OH); ¹³C NMR (100 MHz, $DMSO \cdot d^6$): $\delta = 34.5$, 37.4, 38.0, 40.6, 53.9, 56.1, 65.2, 115.5, 115.9, 119.2, 126.2, 126.2, 127.4, 127.6, 128.2, 128.3, 129.2, 129.3, 130.0, 137.0, 137.6, 138.0, 143.5, 145.1, 155.7, 170.4, 171.1; HRMS (ESI-TOF): Calcd for $C_{33}H_{33}N_3O_5Na$ (M+Na)⁺: 604.2428, Found: 604.2474; IR (KBr, v_{max}/cm^{-1}) = 3398 (OH), 1705 (CON), 1647 (CON).

10.4. Cbz-L-Phe-D-Phe-dopamine 17aLaDb

Yield: 173 mg (99%); colorless powder; 88% de; mp: 76-77 °C; $[\alpha]_D^{27} = +5.3$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 2.43$ (dd, $J = 3.0, 13.6, 1H, CH_AC_6H_5$), 2.45-2.52 (m, 2H, $CH_2CH_2C_6H_3$), 2.62 (dd, $J = 3.6, 13.6, 1H, CH_AC_6H_5$), 2.73 (dd, $J = 4.9, 13.6, 1H, CH_BC_6H_5$), 2.96 (dd, $J = 4.6, 13.6, 1H, CH_BC_6H_5$), 3.15-3.25 (m, 2H, $CH_2CH_2C_6H_3$), 4.24-4.27 (m, 1H, CHCO), 4.47-4.53 (m, 1H, CHNHCO₂), 4.93 (s, 2H, $OCH_2C_6H_5$), 6.42-6.64 (m, 3H, C_6H_3), 7.14-7.29 (m, 15H, $C_6H_5\times3$), 7.30 (d, J = 7.3, 1H, NHCO), 8.05-8.08 (m, 1H, $NHCH_2CH_2$), 8.39 (d, $J = 8.7, 1H, NHCO_2$), 8.65 (s, 1H, OH), 8.74 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 34.5, 37.4, 38.1, 40.6, 48.6, 53.9, 56.1, 65.2, 115.5, 115.9, 119.2, 126.1, 126.2, 127.4, 127.7, 127.9, 128.0, 128.3, 129.2, 129.3, 130.0, 137.0, 137.8, 138.0, 143.6, 145.1, 155.8, 170.7, 171.2; HRMS (ESI-TOF): Calcd for <math>C_{14}H_{19}N_3O_4Na$ (M+Na)⁺: 604.2428, Found: 604.2474; IR (KBr, v_{max}/cm^{-1}) = 3290 (OH), 1697 (CON), 1647 (CON).

10.5. Cbz-L-Phe-L-Phe-amantazine 17aLaLc

Yield: 144 mg (83%); colorless powder; 88% de; mp: 73-75 °C; $[\alpha]_D^{28} = -2.2$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.57$ -1.63 (m, 6H, CH₂×3 of adamantane), 1.86-1.90 (m, 6H, CH₂×3 of adamantane), 1.91-1.97 (m, 3H, CH×3 of adamantane), 2.68 (dd, *J* = 10.4, 13.7, 1H, CH_AC₆H₅), 2.82 (dd, *J* = 8.3, 13.7, 1H, CH_AC₆H₅), 2.89-2.93 (m, 2H, CH_BC₆H₅, CH_B·C₆H₅), 4.22-4.25 (m, 1H, CHCO), 4.46-4.51 (m, 1H, CHNHCO₂), 4.95 (s, 2H, OCH₂C₆H₅), 7.18-7.34 (m, 16H, C₆H₅×3, NH-adamantane), 7.45 (d, *J* = 8.6, 1H, NHCO), 7.95 (d, *J* = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 28.8$, 36.0, 37.4, 38.2, 40.8, 50.8, 54.0, 56.2, 65.2, 79.2, 126.2, 127.3, 127.6, 127.9, 128.0, 128.2, 129.1, 129.4, 137.0, 137.9, 155.7, 169.6, 170.9; HRMS (ESI-TOF): Calcd for C₃₆H₄₁N₃O₄Na (M+Na)⁺: 602.2989, Found: 602.2994; IR (KBr, ν_{max}/cm^{-1}) = 3275 (NH), 2908 (NH), 1707 (CON), 1647 (CON).

10.6. Cbz-L-Phe-D-Phe-amantazine 17aLaDc

Yield: 155 mg (89%); colorless powder; 95% de; mp: 77-78 °C; $[\alpha]_D^{28} = +15.1$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 1.57$ -1.63 (m, 6H, CH₂×3 of adamantane), 1.86-1.90 (m, 6H, CH₂×3 of adamantane), 1.91-1.99 (m, 3H, CH×3 of adamantane), 2.47 (dd, *J* = 11.1, 13.5, 1H, CH_AC₆H₅), 2.61 (dd, *J* = 3.4, 13.5, 1H, CH_AC₆H₅), 2.74 (dd, *J* = 9.6, 13.5, 1H, CH_BC₆H₅), 2.96 (dd, *J* = 4.8, 13.6, 1H, CH_BC₆H₅), 4.20-4.26 (m, 1H, CHCO), 4.48-4.53 (m, 1H, CHNHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.12-7.34 (m, 16H, C₆H₅×3, NH-adamantane), 7.43 (d, *J* = 8.5, 1H, NHCO), 8.28 (d, *J* = 8.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 28.8$, 36.0, 37.3, 38.1, 40.9, 50.8, 54.0, 56.2, 65.1, 126.1, 126.2, 127.3, 127.8, 127.9, 128.2, 129.2, 129.4, 137.0, 137.8, 138.1, 155.8, 169.8, 171.2; HRMS (ESI-TOF): Calcd for C₃₆H₄₁N₃O₄Na (M+Na)⁺: 602.2989, Found: 602.2994; IR (KBr, *v*_{max}/cm⁻¹) = 3273 (NH), 2908 (NH), 1732 (CON), 1639 (CON).

10.7. Cbz-L-Phe-L-Phe-(+)-rimantadine 17aLaLd

Yield: 157 mg (86%); colorless powder; 79% de; mp: 95-98 °C; $[\alpha]_D^{28} = -7.9$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.80$ and 0.92 (d and d, $J = 6.8, 6.9, 3H, CH_3$), 1.30-1.64 (m, 12H, CH₂×6 of adamantane), 1.85-1.90 (m, 3H, CH×3 of adamantane), 2.97 (dd, $J = 10.8, 13.4, 1H, CH_AC_6H_5$), 2.83-2.92 (m, 2H, $CH_BC_6H_5$, $CH_AC_6H_5$), 2.83-2.92 (dd, $J = 6.2, 13.5, 1H, CH_BC_6H_5$), 3.45-3.49 (m, 1H, CHCH₃), 4.22-4.28 (m, 1H, CHCO), 4.57-4.64 (m, 1H, CHNHCO₂), 4.93 (s, 2H, OCH₂C₆H₅), 7.15-7.48 (m, 16H, C₆H₅×3, NH-adamantane), 7.56 (d, J = 9.4, 1H, NHCO), 8.16 (d, $J = 8.2, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 13.9, 14.1, 27.7, 27.8, 35.4, 35.5, 36.5, 36.6, 37.5, 37.7, 37.8, 38.3, 52.2, 52.2, 53.9, 54.1, 56.1, 56.2, 65.2, 126.2, 127.4, 127.6, 127.9, 128.0, 129.1, 129.3, 136.9, 137.5, 137.6, 137.9, 137.9, 155.6, 155.7, 169.9, 171.0, 171.1; HRMS (ESI-TOF): Calcd for C₃₈H₄₅N₃O₄Na (M+Na)⁺: 630.3302, Found: 630.3305; IR (KBr, <math>v_{max}$ /cm⁻¹) = 3275 (NH), 2902 (NH), 1705 (CON), 1647 (CON).

10.8. Cbz-L-Phe-D-Phe-(+)-rimantadine 17aLaDd

Yield: 169 mg (93%); colorless powder; 91% de; mp: 89-91 °C; $[\alpha]_D^{28} = +12.3$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.87$ and 0.96 (d and d, $J = 6.9, 6.9, 3H, CH_3$), 1.34-1.59 (m, 12H, CH₂×6 of adamantane), 1.88-1.91 (m, 3H, CH×3 of adamantane), 2.42-2.48 (m, 1H, CH_A·C₆H₅), 2.55-2.61 (m, 1H, CH_A·C₆H₅), 2.74-2.81 (m, 1H, CH_BC₆H₅), 2.97-3.05 (m, 1H, CH_B·C₆H₅), 3.49-3.52 (m, 1H, CHCH₃), 4.23-4.27 (m, 1H, CHCO), 4.54-4.67 (m, 1H, CHNHCO₂), 4.92 (s, 2H, OCH₂C₆H₅), 7.13-7.43 (m, 16H, C₆H₅×3, NH-adamantane), 7.54 (d, J = 9.5, 1H, NHCO), 8.41 (d, $J = 8.4, 1H, NHCO_2$); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 13.9, 14.1, 27.4, 27.8, 35.5, 35.6, 36.5, 36.6, 37.8, 37.8, 52.2, 52.3, 53.9, 56.2, 65.1, 36.5, 36.5, 36.6, 37.8, 37.8, 52.2, 52.3, 53.9, 56.2, 65.1, 36.5, 36.5, 36.5, 36.5, 36.5, 36.5, 37.8, 37.8, 52.2, 52.3, 53.9, 56.2, 65.1, 56.5, 56.$

126.1, 126.2, 127.3, 127.4, 127.6, 127.9, 128.2, 129.2, 136.9, 137.8, 137.9, 138.1, 155.7, 155.8, 170.0, 171.3; HRMS (ESI-TOF): Calcd for $C_{38}H_{45}N_3O_4Na$ (M+Na)⁺: 630.3302, Found: 630.3305; IR (KBr, $v_{max}/cm^{-1}) = 2902$ (NH), 1707 (CON), 1641 (CON).

10.9. Cbz-L-Phe-L-Phe-memantine 17aLaLe

Yield: 135 mg (74%); colorless powder; 85% de; mp: 91-93 °C; $[\alpha]_D^{28} = +0.8$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.80$ (s, 6H, CH₃×2), 1.07-1.13 (m, 6H, CH₂×3 of adamantane), 1.48-1.74 (m, 6H, CH₂×3 of adamantane), 1.99-2.09 (m, 1H, CH of adamantane), 2.69 (dd, *J* = 10.3, 13.7, 1H, *CH*_AC₆H₅), 2.83 (dd, *J* = 8.4, 13.6, 1H, *CH*_A·C₆H₅), 2.89-2.96 (m, 2H, *CH*_BC₆H₅, *CH*_B·C₆H₅), 4.19-4.25 (m, 1H, CHCO), 4.44-4.50 (m, 1H, *CH*NHCO₂), 4.95 (s, 2H, OCH₂C₆H₅), 7.17-7.36 (m, 16H, C₆H₅×3, NH-adamantane), 7.45 (d, *J* = 8.6, 1H, NHCO), 7.94 (d, *J* = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 29.4$, 30.0, 31.8, 37.4, 38.1, 42.2, 46.8, 46.9, 50.2, 52.4, 54.0, 56.2, 65.2, 126.2, 127.3, 127.6, 127.9, 128.0, 128.3, 129.1, 129.4, 137.0, 137.5, 137.9, 155.7, 169.7, 170.9; HRMS (ESI-TOF): Calcd for C₃₈H₄₅N₃O₄Na (M+Na)⁺: 630.3302, Found: 630.3305; IR (KBr, *v*_{max}/cm⁻¹) = 3305 (NH), 2900 (NH), 1709 (CON), 1645 (CON).

10.10. Cbz-L-Phe-D-Phe-memantine 17aLaDe

Yield: 149 mg (82%); colorless powder; 97% de; mp: 80-82 °C; $[\alpha]_D^{28} = +7.9$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.80$ (s, 6H, CH₃×2), 1.08-1.13 (m, 6H, CH₂×3 of adamantane), 1.51-1.78 (m, 6H, CH₂×3 of adamantane), 2.05-2.06 (m, 1H, CH of adamantane), 2.46 (dd, *J* = 10.6, 13.5, 1H, *CH*_{*A*}C₆H₅), 2.59 (dd, *J* = 3.7, 13.7, 1H, *CH*_{*A*}·C₆H₅), 2.72 (dd, *J* = 9.6, 13.5, 1H, *CH*_{*B*}C₆H₅), 2.96 (dd, *J* = 4.8, 13.7, 1H, *CH*_{*B*}·C₆H₅), 4.18-4.24 (m, 1H, CHCO), 4.44-4.49 (m, 1H, *CH*NHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.13-7.33 (m, 16H, C₆H₅×3, NH-adamantane), 7.43 (d, *J* = 8.4, 1H, NHCO), 8.27 (d, *J* = 8.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 29.5$, 30.0, 31.8, 37.2, 38.0, 42.2, 46.9, 50.2, 52.4, 554.1, 56.3, 65.1, 126.1, 127.3, 127.6, 127.8, 127.9, 128.3, 129.1, 129.3, 136.9, 137.8, 138.0, 155.9, 169.9, 171.2; HRMS (ESI-TOF): Calcd for C₃₈H₄₅N₃O₄Na (M+Na)⁺: 630.3302, Found: 630.3305; IR (KBr, *v*_{max}/cm⁻¹) = 3275 (NH), 2900 (NH), 1705 (CON), 1637 (CON).

11. Typical procedure of the primary amidation of Cbz-L-Phe-L-Val-L-Phe-OH 19aLcLaL with NH₄Cl

To a colorless solution of 163 mg (0.30 mmol) of Cbz-L-Phe-L-Val-L-Phe-OH (**19aLcLaL**) in 6 mL of anhydrous THF were added dropwise at -15 $^{\circ}$ C 126 μ L (0.9 mmol, 3.0 equiv) of a precooled Et₃N and 40

 μ L (0.42 mmol, 1.4 equiv) of a precooled ClCO₂Et. After stirring for 10 min at -15 °C, 0.45 mL (0.45 mmol, 1.5 equiv) of a precooled 1.0M aqueous solution of NH₄Cl was added dropwise at -15 °C to the colorless suspension. The mixture was stirred for 24 h at -15 °C and 15mL of H₂O was added dropwise at -15 °C to the resulted mixture. The suspension was extracted with 100 mL of EtOAc, washed with 10 mL of brine, and dried over anhydrous MgSO₄. The crude product was chromatographed on silica gel with a 1:1 mixture of hexane and EtOAc to afford 155 mg (95% yield) of Cbz-L-Phe-L-Val-L-Phe-NH₂ **20aLcLaL**.

11.1. Cbz-L-Phe-L-Val-L-Phe-NH₂ 20aLcLaL

Yield: 155 mg (95%); colorless powder; 76% de; mp: 247-249 °C; $[\alpha]_D^{27} = -2.3$ (*c* 1.01, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.79$ (d, J = 5.6, 6H, (*CH*₃)₂CH), 1.90-1.98 (m, 1H, (*CH*₃)₂C*H*), 2.70 (dd, J = 11.0, 13.7, 1H, *CH*_AC₆H₅), 2.81 (dd, J = 8.9, 13.8, 1H, *CH*_AC₆H₅), 2.93 (dd, J = 3.3, 13.7, 1H, *CH*_BC₆H₅), 2.99 (dd, J = 5.2, 13.8, 1H, *CH*_BC₆H₅), 4.14-4.18 (m, 1H, *CHC*H(*CH*₃)₂), 4.28-4.33 (m, 1H, *CHC*ONH₂), 4.45-4.51 (m, 1H, *CH*NHCO₂), 4.94 (s, 2H, OC*H*₂C₆H₅), 7.06 (brs, 1H, NH_A), 7.13-7.34 (m, 15H, C₆H₅×3), 7.39 (brs, 1H, NH_B), 7.55 (d, J = 8.7, 1H, NHCO), 7.86 (d, J = 8.9, 1H, NHCHCONH₂), 7.98 (d, J = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 18.0$, 19.1, 30.7, 37.2, 37.6, 53.5, 56.0, 57.7, 65.1, 126.2, 127.4, 127.6, 128.0, 128.3, 129.1, 129.2, 137.0, 137.8, 155.8, 170.5, 171.4, 172.6; HRMS (ESI-TOF): Calcd for C₃₁H₃₆N₄O₅Na (M+Na)⁺: 567.2578, Found: 567.2554; IR (KBr, v_{max}/cm^{-1}) = 3296 (NH), 1670 (CON), 1635 (CON).

11.2. Cbz-L-Phe-L-Val-D-Phe-NH₂ 20aLcLaD

Yield: 153 mg (94%); colorless powder; 72% de; mp: 254-256 °C; $[\alpha]_D^{27} = +17.9$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.57$ (d, J = 6.6, 6H, (*CH*₃)₂CH), 1.72-1.98 (m, 1H, (*CH*₃)₂CH), 2.67-2.76 (m, 2H, *CH*_AC₆H₅, *CH*_A·C₆H₅), 2.93 (dd, J = 3.5, 13.8, 1H, *CH*_BC₆H₅), 3.08 (dd, J = 3.8, 13.6, 1H, *CH*_B·C₆H₅), 4.10-4.14 (m, 1H, *CH*CH(*CH*₃)₂), 4.27-4.33 (m, 1H, *CH*CONH₂), 4.45-4.49 (m, 1H, *CH*NHCO₂), 4.93 (s, 2H, OCH₂C₆H₅), 7.13 (brs, 1H, NH_A), 7.15-7.34 (m, 15H, C₆H₅×3), 7.43 (brs, 1H, NH_B), 7.53 (d, J = 8.6, 1H, NHCO), 7.86 (d, J = 8.4, 1H, NHCHCONH₂), 8.28 (d, J = 8.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.7$, 19.0, 30.5, 37.2, 37.5, 53.9, 56.0, 57.8, 65.2, 126.1, 127.4, 127.6, 128.0, 128.0, 128.3, 129.1, 129.2, 137.0, 138.1, 138.1, 155.8, 170.6, 171.6, 173.1; HRMS (ESI-TOF): Calcd for C₃₁H₃₆N₄O₅Na (M+Na)⁺: 567.2578, Found: 567.2554; IR (KBr, v_{max}/cm^{-1}) = 3284 (NH), 1697 (CON), 1631 (CON).

11.3. Cbz-L-Phe-L-Val-L-Ala-NH₂ 20aLcLbL

Yield: 125 mg (89%); colorless powder; mp: 266-268 °C; $[\alpha]_D^{28} = +2.2$ (*c* 1.02, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.84$, 0.88 (d, d, J = 6.9, 7.0, 3H, 3H, (CH₃)₂CH), 1.20 (d, J = 7.0, 3H, CH₃CH), 1.97-2.05 (m, 1H, (CH₃)₂CH), 2.74 (dd, J = 11.2, 13.7, 1H, CH_AC₆H₅), 3.01 (dd, J = 3.2, 13.7, 1H, CH_BC₆H₅), 4.20-4.24 (m, 2H, CHCH(CH₃)₂, CHCONH₂), 4.31-4.36 (m, 1H, CHNHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 6.69 (brs, 1H, NH_A), 7.18-7.74 (m, 11H, C₆H₅×2, NH_B), 7.54 (d, J = 8.6, 1H, NHCO), 7.91 (d, J = 8.8, 1H, NHCHCONH₂), 7.96 (d, J = 7.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.9$, 18.4, 19.2, 30.7, 37.3, 47.9, 56.1, 57.5, 65.2, 126.2, 127.4, 127.6, 128.0, 129.2, 127.4, 127.6, 128.0, 128.3, 129.2, 137.0, 138.1, 155.8, 170.2, 171.5, 173.9; HRMS (ESI-TOF): Calcd for C₂₅H₃₂N₄O₅Na (M+Na)⁺: 491.2265, Found: 491.2302; IR (KBr, ν_{max} /cm⁻¹) = 3284 (NH), 1697 (CON), 1630 (CON).

11.4. Cbz-L-Phe-L-Val-D-Ala-NH₂ 20aLcLbD

Yield: 119 mg (85%); colorless powder; mp: 184-186 °C; $[\alpha]_D^{28} = +1.5$ (*c* 0.98, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.56$, 0.58 (d, d, J = 6.6, 6.6, 3H, 3H, $(CH_3)_2$ CH), 1.20 (d, J = 7.0, 3H, CH_3 CH), 1.91-2.04 (m, 1H, $(CH_3)_2$ CH), 2.75 (dd, J = 10.5, 13.7, 1H, $CH_AC_6H_5$), 3.01 (dd, J = 8.6, 13.7, 1H, $CH_BC_6H_5$), 4.14-4.40 (m, 3H, $CHCH(CH_3)_2$, $CHCONH_2$, $CHNHCO_2$), 4.94 (s, 2H, $OCH_2C_6H_5$), 6.98 (brs, 1H, NH_A), 7.03-7.57 (m, 12H, $C_6H_5 \times 2$, NH_B, NHCO), 7.76 (d, J = 9.1, 1H, NHCHCONH₂), 7.95 (d, J = 9.0, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.8$, 19.0, 19.2, 29.0, 30.7, 37.2, 56.2, 57.1, 57.3, 65.2, 126.2, 127.3, 127.5, 127.6, 128.0, 128.0, 128.3, 129.2, 129.2, 137.0, 138.1, 155.8, 171.3, 172.7, 174.0; HRMS (ESI-TOF): Calcd for $C_{25}H_{32}N_4O_5Na$ (M+Na)⁺: 491.2265, Found: 491.2302; IR (KBr, v_{max}/cm^{-1}) = 3292 (NH), 1697 (CON), 1647 (CON).

11.5. Cbz-L-Phe-L-Val-L-Val-NH₂ 20aLcLcL

Yield: 125 mg (84%); colorless powder; mp: 268-269 °C; $[\alpha]_D^{28} = -1.4$ (*c* 1.00, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.76$ -0.91 (m, 12H, (*CH*₃)₂CH×2), 1.93-2.04 (m, 2H, (*CH*₃)₂CH), 2.74 (dd, *J* = 11.0, 13.7, 1H, *CH*_AC₆H₅), 3.00 (dd, *J* = 3.3, 13.7, 1H, *CH*_BC₆H₅), 4.11-4.15 (m, 1H, *CH*CH(*CH*₃)₂), 4.23-4.27 (m, 1H, *CH*CONH₂), 4.31-4.37 (m, 1H, *CH*NHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.04 (brs, 1H, NH_A), 7.19-7.33 (m, 11H, C₆H₅×2, NH_B), 7.53 (d, *J* = 8.6, 1H, NHCO), 7.71 (d, *J* = 8.8, 1H, NHCHCONH₂), 7.99 (d, *J* = 8.8, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.9$, 18.1, 19.2, 19.3, 30.5, 30.5, 37.2, 56.0, 57.4, 57.8, 65.2, 126.2, 127.4, 127.6, 128.0, 128.3, 129.2, 137.0, 138.1, 155.8, 170.6, 171.5, 172.7; HRMS (ESI-TOF): Calcd for C₂₇H₃₆N₄O₅Na (M+Na)⁺: 519.2578, Found: 519.2504; IR (KBr, *v*_{max}/cm⁻¹) = 3294 (NH), 1670 (CON), 1637 (CON).

11.6. Cbz-L-Phe-L-Val-D-Val-NH₂ 20aLcLcD

Yield: 115 mg (77%); colorless powder; mp: 271-273 °C; $[\alpha]_D^{28} = +0.2$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.76$ -0.87 (m, 12H, (*CH*₃)₂CH×2), 1.98-2.07 (m, 2H, (*CH*₃)₂*CH*), 2.74 (dd, *J* = 11.1, 13.5, 1H, *CH*_AC₆H₅), 2.99 (dd, *J* = 3.5, 13.6, 1H, *CH*_BC₆H₅), 4.15-4.19 (m, 1H, *CHCH*(*CH*₃)₂), 4.31-4.37 (m, 2H, *CH*CONH₂, *CH*NHCO₂), 4.95 (s, 2H, OCH₂C₆H₅), 7.07 (brs, 1H, NH_A), 7.18-7.34 (m, 10H, C₆H₅×2), 7.37 (brs, 1H, NH_B), 7.55 (d, *J* = 8.6, 1H, NHCO), 7.95 (d, *J* = 8.8, 1H, NHCHCONH₂), 7.97 (d, *J* = 8.8, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 17.7$, 17.8, 17.9, 19.2, 19.4, 30.1, 30.7, 37.3, 56.0, 57.3, 57.9, 65.2, 126.2, 127.4, 127.5, 127.6, 128.0, 128.3, 129.2, 137.0, 138.0, 155.8, 170.9, 171.5, 172.7, 172.9; HRMS (ESI-TOF): Calcd for C₂₇H₃₆N₄O₅Na (M+Na)⁺: 519.2578, Found: 519.2504; IR (KBr, ν_{max}/cm^{-1}) = 3292 (NH), 1697 (CON), 1623 (CON).

11.7. Cbz-L-Phe-L-Val-L-Met-NH₂ 20aLcLdL

Yield: 153 mg (97%); colorless powder; mp: 221-223 °C; $[\alpha]_D^{27} = +20.0$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.84$, 0.87 (d, d, J = 5.6, 6.6, 3H, 3H, (CH₃)₂CH), 1.77-2.02 (m, 3H, CH₂CH₂S, (CH₃)₂CH), 2.03 (s, 3H, CH₃S), 2.40-2.46 (m, 2H, CH₂CH₂S), 2.72 (dd, J = 10.9, 13.7, 1H, CH_AC₆H₅), 3.00 (dd, J = 3.5, 13.7, 1H, CH_BC₆H₅), 4.14-4.21 (m, 1H, CHCH(CH₃)₂), 4.27-4.36 (m, 2H, CHCONH₂, CHNHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.07 (brs, 1H, NH_A), 7.20-7.33 (m, 12H, C₆H₅×2, NH_B, NHCO), 7.54 (d, J = 8.5, 1H, NHCHCONH₂), 7.96 (d, J = 8.6, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.5$, 14.6, 18.1, 19.2, 29.6, 30.5, 31.9, 37.2, 56.0, 57.8, 65.2, 126.2, 127.4, 127.5, 127.7, 128.0, 128.3, 129.2, 137, 51.7.0, 138.1, 155.8, 170.7, 171.6, 172.8; HRMS (ESI-TOF): Calcd for C₂₇H₃₆N₄O₅SNa (M+Na)⁺: 551.2299, Found: 551.2222; IR (KBr, v_{max} /cm⁻¹) = 3284 (NH), 1676 (CON), 1635 (CON).

11.8. Cbz-L-Phe-L-Val-D-Met-NH₂ 20aLcLdD

Yield: 149 mg (94%); colorless powder; mp: 248-250 °C; $[\alpha]_D^{27} = +30.6$ (*c* 0.99, DMSO); ¹H NMR (400 MHz, DMSO-*d*⁶): $\delta = 0.75$, 0.87 (d, d, J = 5.6, 6.6, 3H, 3H, (*CH*₃)₂CH), 1.77-2.00 (m, 3H, *CH*₂CH₂S, (*C*H₃)₂C*H*), 2.02 (s, 3H, *C*H₃S), 2.38-2.47 (m, 2H, *C*H₂C*H*₂S), 2.76 (dd, J = 10.8, 13.8, 1H, *CH*_AC₆H₅), 3.95 (dd, J = 10.2, 13.8, 1H, *CH*_BC₆H₅), 4.11-4.17 (m, 1H, *CH*CH(*C*H₃)₂), 4.27-4.33 (m, 2H, *CH*CONH₂, *CH*NHCO₂), 4.94 (s, 2H, OCH₂C₆H₅), 7.10 (s, 1H, NH_A), 7.17-7.36 (m, 12H, C₆H₅×2, NH_B, NHCO), 7.55 (d, J = 8.6, 1H, *NH*CHCONH₂), 8.23 (d, J = 8.2, 1H, NHCO₂); ¹³C NMR (100 MHz, DMSO-*d*⁶): $\delta = 14.5$, 14.6, 17.6, 18.3, 19.1, 29.7, 29.7, 30.0, 30.4, 31.3, 37.2, 52.4, 51.8, 56.0, 56.2, 57.9, 58.3, 65.2, 65.4, 126.2, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 127.8, 128.0, 128.3, 128.3, 129.2, 129.3, 136.8, 137.0, 137.6, 138.0, 155.8, 170.9, 126.3, 127.4, 127.6, 1

171.8, 172.2, 173.1, 173.2; HRMS (ESI-TOF): Calcd for $C_{27}H_{36}N_4O_5SNa (M+Na)^+$: 551.2299, Found: 551.2336; IR (KBr, v_{max}/cm^{-1}) = 3284 (NH), 1676 (CON), 1635 (CON).

Acknowledgments

I would first like to express my sincere gratitude to Professor Nobuyuki Imai of the Synthetic Organic Chemistry Laboratory at Chiba Institute of Science for the continuous support of my Ph.D research and for the valuable advice in completing this thesis.

Besides my advisor, I would like to thank Associate Professor Takuya Noguchi, Assistant Professor Yuya Kawashima, and the members of Imai group for their insightful comments and examination of this thesis.

References

- 1. Baillie, T.A. Chem. Res. Toxicol. 2006, 19, 889-893.
- 2. Horvath, I.; Anastas, P. T. Chem. Rev. 2007, 107, 2167-2168.
- 3. *Office of Pollution Prevention and Toxics*, The Presidential Green Chemistry Challenge, Award Recipients, http://www.epa.gov/greenchemistry/pubs/docs/award_recipients_1996_2010.pdf
- 4. Li, G.; Szostak, M. Nat. Commun. 2018, 9, 4165-4173.
- 5. (a) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. *Bull. Chem. Soc. Japan* 2017, *90*, 689-696;
 (b) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. *Tetrahedron: Asymmetry* 2017, *28*, 75-83;
 (c) Noguchi, T.; Jung, S.; Imai, N. *Chem. Lett.* 2012, *41*, 577-579; (d) Noguchi, T.; Tehara, N.; Uesugi, Y.; Jung, S.; Imai, N. *Chem. Lett.* 2012, *41*, 42-43.
- 6. (a) Beale, T. M.; Allwood, D. M.; Bender, A.; Bond, P. J.; Brenton, J. D.; Charnock-Jones, D. S.; Ley, S. V.; Myers, R. M.; Shearman, J. W.; Temple, J.; Unger, J.; Watts, C. A.; Xian, J. ACS Med. Chem. Lett., 2013, *3*, 177-181. (b) Wender, P. A.; Baryza, J. L. Org. Lett., 2005, *7*, 1177-1180. (c) Song, Y. H.; Hong, S.; Lim, H.; Seo, J.; Chung, S.; No, I.; Lee, K.; Yoon, M. Chem. Pharm. Bull., 2004, *52*, 597-601. (d) Nedev, H.; Nabarisoa, H.; Haertle, T. Tetrahedron Lett., 1993, *34*, 4201.
- (a) Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N.; *Synthesis* 2019, *51*, 3683-3696; (b) Ezawa, T.; Kawashima, Y.; Noguchi, T.; Jung, S.; Imai, N. *Tetrahedron: Asymmetry* 2017, *28*, 266–281; (c) Kawashima, Y.; Ezawa, T.; Yamamura, M.; Harada, T.; Noguchi, T.; Imai, N. *Tetrahedron Lett.* 2016, *57*, 668–671; (d) Noguchi, T.; Jung, S.; Imai, N. *Tetrahedron Lett.* 2014, *55*, 394–396; (e) Jung, S.; Tsukuda, Y.; Kawashima, R.; Ishiki, T.; Matsumoto, A.; Nakaniwa, A.; Takagi, M.; Noguchi, T.; Imai, N. *Tetrahedron Lett.* 2013, *54*, 5718–5720; (f) Noguchi, T.; Sekine, M.; Yokoo, Y.; Jung, S.; Imai, N. *Chem. Lett.* 2013, *42*, 580–582; (g) Jung, S.; Noguchi, T.; Kawashima, Y.; Imai, N. in preparation.
- (a) Chen, C.; Krausz, K. W.; Idle, J. R.; Gonzales, F. J. J. Biol. Chem. 2008, 283, 4543-4559. (b) Manyike, P. T.; Kharasch, E. D.; Kalhorn, T. F.; Slattery, J. T. Clin. Pharmacol. Ther. 2000, 67, 275. (c) Webster, P. A.; Roberts, D. W.; Benson, R. W.; Kearns, G. L. J. Clin. Pharmacol. 1996, 36. 397.
- Högestätt, E. D.; Jönsson, B. A. G.; Ermund, A.; Andersson, D. A.; Björk, H.; Alexander, J. P.; Cravatt,
 B. F.; Basbaum, A. I.; Zygmunt, P. M. J. Biol. Chem. 2005, 280, 31405-31412.
- (a) Deshpande, L. S.; Delorenzo, R. J. *Neuroreport* 2011, 22, 15-18. (b) Ottani, A.; Leone, S; Sandrini, M.; Ferrari, A.; Bertolini, A. *Eur. J. Pharmacol.* 2006, *531*, 280-281.
- 11. Pattabiraman, V. R.; Bode, J. W. Nature. 2011, 480, 471-479.
- 12. Smith, G. G.; Sivakua, T. J. Org Chem. 1983, 48, 627-634.
- 13. Vaughan, Jr. J. R. J. Am. Chem. Soc., 1951, 73, 3547; Boissonnas, R. A. Helv. Chim. Acta. 1951, 34, 874-879.
- 14. Kovacs, J.; Holleran, E. M.; Hui, K. Y. J. Org. Chem. 1980, 45, 1060-1065.

- 15. Verardo, G.; Gorassini, A. J. Pept. Sci. 2013, 19, 315-324.
- 16. Fuse, S.; Matsuda, K.; Otake, Y.; Nakamura, H. Chem. Eur. J. 2019, 25, 15091-15097.
- 17. (a) Carpino, L. A.; El-Faham, A. J. Org. Chem., 1994, 59, 695-698. (b) El-Faham, A.; Albericio, F. J. Org. Chem., 2008, 73, 2731-2737. (c) El-Faham, A.; Funosas, R. S.; Prohens, R.; Albericio, F. Chem. 2008, 73, 2731-2737. (c) El-Faham, A.; Funosas, R. S.; Prohens, R.; Albericio, F. Chem. Eur. J. 2009, 15, 9404-9416, and the references cited therein.
- 18. Montalbetti, C. A. G. N.; Falque, V. *Tetrahedron* 2005, *61*, 10827-10852 and the references cited therein.