博 士 論 文

Convenient green preparation of dipeptides and primary amides via carbonic carboxylic anhydrides and asymmetric synthesis of memantine analogues as a candidate of anti－ Alzheimer＇s medicine

千葉科学大学
大学院薬学研究科
薬学専攻

江澤 哲也

平成 30 年 1 月

List of abbreviations

The following abbreviations are used in this paper.
$\mathrm{A} \beta \quad$ amiloyd β
Ac acetyl
Ad adamantyl
AD
Ala
Alzheimer's disease

ALS
(+)-AMMP
aq.
Ar
Asp
Bn
Boc
br
${ }^{\circ} \mathrm{C}$
Cbz
CDI carbonyldiimidazole
CNS central nervous system
COMU N-[1-(cyano-2-ethoxy-2-oxoethylidenaminooxy) dimethylamino(morpholino)]uronium hexafluorophosphate
Cys cysteine
D dextro
d doublet (spectral)
DCC dicyclohexylcarbodiimide
DIBAL-H diisobutylaluminium hydride
DMF
DMSO
DMT-MM
DPPA
ee
eq
ER
ESI
Et
N, N-dimethylformamide
dimethylsulfoxide
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
diphenylphosphoryl azide
enantiomeric excess
equivalent
endoplasmic reticulum
electronspray ionization
ethyl

Fmoc	9-fluorenylmethyloxycarbonyl
g	gram (s)
Gln	glutamine
Glu	glutamic acid
Gly	glycine
h	hour (s)
His	histidine
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrum
Hz	hertz
$i-\mathrm{Bu}$	iso-butyl
IBX	2-iodoxybenzoic acid
$i-\mathrm{Pr}$	iso-propyl
IR	infrared
J	coupling constant (in NMR)
L	levo
L	liter (s)
Leu	leucine
Lys	lysine
m	milli, multiplet (spectral)
M	moles per liter
m/z	mass to change ratio (in mass spectrometry)
MAO	monoamine oxidase
Me	methyl
Met	methonine
mol	mole (s)
Ms	methanesulfonyl
4-NBsOXY	ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)acetate
NMR	nuclear magnetic resonance
Ns	4-nitrobenzenesulfonyl
PB	phosphate buffer (1/15 M, pH 7.0)
Ph	phenyl
Phe	phenylalanine
Phg	phenylglycine
PPL	porcine pancreas lipase
q	quartet (spectral)
rt	room temperature

S
Ser
t
TBPB
t-Bu
TCT
TFA
THF
Thr
TLC
TMS
TOF
Trp
$\operatorname{Trp}(5-\mathrm{OH})$
Ts
Tyr
$\operatorname{Tyr}(3-\mathrm{I})$
Tyr(3-OH)
Val
Z
δ
μ
singlet (spectral)
serine
triplet (spectral)
tert-butyl peroxybenzoate
tert-butyl
2,4,6-trichloro[1,3,5]-triazine (cyanuric chloride)
trifluoroacetic acid
tetrahydrofuran
threonine
thin-layer chromatography
tetramethylsilane
time-of-flight
tryptophan
5-hydroxytryptophan
p-toluenesulfonyl
tyrosine
3-iodoxytyrosine
3-hydroxytyrosine
valine
zusammen
chemical shift in parts per million downfield from tetramethylsilane micro

Table of contents

Introduction 5
Chapter 1. Amidation of carboxylic acids via mixed carboxylic carbonic anhydrides 7
Section 1. Convenient green preparation of dipeptides using unprotected α-amino acids under nutral conditions 7
Section 2. Ecological base-conditioned preparation of dipeptides using unprotected α-amino acids containing hydrophilic side chains 13
Section 3. Amidation of carboxylic acids via the mixed carbonic carboxylic anhydrides and its application to synthesis of antidepressant $(1 S, 2 R)$-tranylcypromine 19
Chapter 2. Synthesis of memantine analogues containing sigma-1 receptor activity as a candidate of anti-Alzheimer's medicine 26
Conclusion 33
Experimental 35
Acknowledgement 80
References 81

Introduction

The green chemistry meaning "the environment-conscious chemistry" is an attractive topic for scientific technology because environmental pollution has become a serious global issues. Since the Nobel Prize in Chemistry was won in the areas of the catalytic enantioselective reactions that were largely seen as a green chemistry in both 2001 (Knowles, ${ }^{1}$ Noyori, ${ }^{2}$ Sharpless ${ }^{3}$) and 2005 (Chauvin, ${ }^{4}$ Grubbs, ${ }^{5}$ Schrock ${ }^{6}$), they have made remarkable progress. In particular, development of organocatalysts and their application to asymmetric syntheses are considerable efforts. The intramolecular aldol reaction catalyzed by proline as an organocatalyst was initially reported by Hajos, ${ }^{7}$ and its intermolecular type was discovered by List. ${ }^{8}$ Recently, effective approaches using peptide-derived organocatalyst for asymmetric reactions were also developed by many groups. ${ }^{9} \alpha$ Amino acids and their derivatives are commercially available chiral catalyst and play an important role in the fields of chemical and biological reserches. ${ }^{10}$ On the other hand, it is difficult to synthesize the catalysts prepared from α-amino acid derivatives because of the problems such as protection of functional group, racemization or epimerization, side reaction, and low solubility in organic solvent. ${ }^{11}$ Development of catalytic synthetic method for chiral compounds has strongly been desired in terms of keeping green.

Under those background, our group is aiming at development of green organic reaction and the synthetic method of bioactive substances containing a chiral cyclopropane skeleton. As the results, the regioselective acetylation using porcine pancreas lipase (PPL) (Scheme 1), ${ }^{12}$ and the catalytic enantioselective Simmons-Smith reaction using L-phenylalanine-derived chiral ligand (Scheme 2), ${ }^{13}$ and preparations of dipeptides, ${ }^{14 \mathrm{~d}, 14 \mathrm{e}}$ primary amides ${ }^{14 \mathrm{c}, 14 \mathrm{a}}$ and acetaminophen analogues ${ }^{14 \mathrm{~b}}$ via mixed carbonic carboxylic anhydrides without racemization or epimerization in the presence of water have been reported (Scheme 3). Additionally, the convenient syntheses of optically active biological substances containing a chiral cyclopropane skeleton have been also achieved via the reactions. ${ }^{15}$

Among those reactions, the cyclopropanation and the amidation attracted my attention. Although general amidation is several limitations including expensive coupling reagents, protection of functional group and unstability of active intermediates in water, the amidation reported by my group enable to lead not only simple procedure but also utilizing hydrophilic substrate and avoiding racemization or epimerization. Then, the chiral ligands are cheaply and easily prepared from α-amino

Scheme 1. Regioselective preparation of monoacetates using PPL

Scheme 2. Catalytic enantioselective Simmons-Smith reaction of allyl alcohol in the presence of chiral lgand derived from L-phenylalanine

Acetaminophen analogues

Scheme 3. Convenient synthesis of various amides via mixed carbonic carboxylic anhydrides
acids in five steps and are not C_{2}-symmetrical unlike various chiral ligands ${ }^{16}$ used for Simmons-Smith reaction. Herein, I performed further application to synthesis of bioactive substance containing a cyclopropane skeleton using the reactions. Namely, the two contents; (I) convenient green preparation of dipeptides and primary amides via carbonic carboxylic anhydrides without racemization; ${ }^{17}$ (II) synthesis of memantine analogues containing a sigma-1 receptor activity as a candidate of antiAlzheimer's medicine ${ }^{18}$ are described in this paper.

Chapter 1. Amidations of carboxylic acids via mixed carboxylic carbonic anhydrides

The amide group is one of the most important functional groups in organic chemistry. It is widely found in various compounds such as proteins, bioactive substances, drugs, and agrochemicals. ${ }^{19}$ Therefore, development of convenient amidations has been a challenging subject in organic chemistry. So far, the convenient syntheses of various biological substance containing a chiral cyclopropane skeleton have been achieved in my group. ${ }^{15}$ In the prosses on the synthesis of cyclopropane amino acids which are α-amino acid derivatives containing a cyclopropane ring, preparation of primary amides as a key intermediate was succeeded by the reaction of the mixed carbonic carboxylic anhydride of carboxylic acids with aqueous ammonia solution.

Generally, amides are prepared by reactions of activated carboxylic acids, such as acyl halides, acyl imidazole, mixed anhydrides, and esters with amines or by reductions of acyl azides and hydrazides. ${ }^{20}$ The reagents, such as thionyl chloride, ${ }^{21 \mathrm{~g}}$ oxalyl chloride, ${ }^{21 \mathrm{~d}}$ dicyclohexylcarbodiimide (DCC), ${ }^{21 \mathrm{e},}{ }^{21 \mathrm{f}}$ diphenylphosphoryl azide (DPPA), ${ }^{21 \mathrm{~h}}$ carbonyldiimidazole (CDI), ${ }^{21 \mathrm{i}}$ alkyl chloroformate, ${ }^{21 \mathrm{j}}$ 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM), ${ }^{21 b}$, 21c and N-[1-(cyano-2-ethoxy-2-oxoethylidenaminooxy) dimethylamino(morpholino)]uronium hexafluorophosphate (COMU) $)^{21 a}$ have often been used for activation of carboxylic acids. In particular, the mixed carbonic carboxylic anhydrides prepared from the corresponding carboxylic acids are relatively stable and efficiently reactive with nucleophiles. ${ }^{22}$

Then, I focused on advantageous property of the mixed carbonic carboxylic anhydride which is chemically more reactive with amines than alcohols, stable in water at low temperature, and prepared by simple procedure. Therefore, it would be expected that the mixed carbonic carboxylic anhydrides of carboxylic acids are easily condensed with the desired hydrophilic parts by the minimal use of protecting group. Recently, we reported the convenient amidation of the mixed carbonic carboxylic anhydrides with unprotected α-amino acids under neutral or basic conditions to afford the corresponding dipeptides easily by crystallization. ${ }^{14 \mathrm{~d},}{ }^{14 \mathrm{e}}$ In addition, we have also developed an amidation using ammonium chloride or aniline derivatives as a nucleophile in the presence of water. ${ }^{14 \mathrm{a}-}$ ${ }^{14 c}$ As scope of substrate tolerance, the synthesis of various amides from carboxylic acids with unprotected α-amino acids, ammonium chloride and amines in the presence of water are described in Sections 1-3 of Chapter 1.

Section 1. Convenient green preparation of dipeptides using unprotected α-amino acids under neutral conditions

Peptides are one of the most important human components and induce various physiological

Scheme 4. Convenient synthetic method of dipeptides via the mixed carbonic carboxylic anhydrides

Table 1. Solvent effect on the amidation of 3-phenylpropanoic acid 1a with L-phenylalanine 2a in the presence of ethyl chloroformate ${ }^{\text {a }}$

${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{1 a}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of $\mathbf{2 a}$. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}}$ The reaction time was 3 h .
activities as an element of proteins. ${ }^{23}$ Therefore, various types of convenient peptide syntheses have been developed in chemical and biomedical research. ${ }^{24}$ It is well known that the functional groups such as hydroxy, amino, and carboxy group on α-amino acids should be protected in order to avoid production of undesired by-products in the amidation. ${ }^{11}$ However, the methods using protecting groups are not environmentally friendly. Herein, the condensation of carboxylic acids with unprotected α amino acids via the corresponding mixed carbonic carboxylic anhydrides activated with ethyl chloroformate in the presence of triethylamine was described (Scheme 4).

In a preliminary investigation, the reaction of 3-phenylpropanoic acid 1a with 1.5 equiv of Lphenylalanine $\mathbf{2 a}$ in the presence of 1.4 equiv of ethyl chloroformate and 3.0 equiv of triethylamine in tetrahydrofuran (THF) $-\mathrm{H}_{2} \mathrm{O}$ afforded the corresponding amide 3aa in 97% yield as indicated in entry 2 of Table 1. The solvent effect of the reaction was examined as shown in Table 1. The reaction of 1a and $\mathbf{2 a}$ in ether was monitored by TLC in both steps; the second step did not proceed at $0^{\circ} \mathrm{C}$. Therefore, the second step was performed at rt to afford the corresponding amide 3aa in 87% yield (entry 1). In the case of using dimethyl sulfoxide (DMSO) and N, N-dimethylformamide (DMF) as the solvent, the

Table 2. Effect of the quantity of ethyl chloroformate on the amidation of 3-phenylpropanoic acid 1a with L-phenylalanine $\mathbf{2} \mathbf{a}^{\text {a }}$

Entry	$\mathrm{ClCO}_{2} \mathrm{Et}$	Reaction Temp.		Yield${ }^{\mathrm{b} / \%}$
	Step 1)	$0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	
1	1.1 eq	$0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	97
2	1.4 eq	$0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	97
3	2.0 eq	$0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to rt	94
4	1.4 eq	$0^{\circ} \mathrm{C}$ to rt	$0^{\circ} \mathrm{C}$ to rt	95

${ }^{a}$ All reactions were carried out with 0.50 mmol of 1 a , ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of $\mathbf{2 a}$. ${ }^{\text {b }}$ Isolated yields.
yield of 3aa decreased to 4% and 59\%, respectively (entries 4 and 5). The reactions using 1,4-dioxane, DMSO, and DMF as the solvent were carried out at rt in order to avoid freezing. Amidation of 1a with 2a proceeded in THF, 1,4-dioxane, acetone, and acetonitrile to give 3aa in 93-97\% yields (entries 2, 3, 6 and 7). A small amount of N-ethoxycarbonyl-L-phenylalanine $4 \mathbf{a}$ was detected as a by-product on the basis of ${ }^{1} \mathrm{H}$ NMR analysis in all entries of Table 1. It is assumed that $\mathbf{4 a}$ is mainly produced by the reaction of $\mathbf{2 a}$ with the remaining ethyl chloroformate (Scheme 4).

Next, the effect of the quantity of ethyl chloroformate on the amidation was examined and the results are summarized in Table 2. Carboxylic acid 1a was efficiently coupled with 2a to afford 3aa in $94-97 \%$ yields, and a small amount of the by-product $\mathbf{4 a}$ was detected by ${ }^{1} \mathrm{H}$ NMR analysis in all entries of Table 2. The optimized conditions for preparing 3aa were treatment of $\mathbf{1 a}$ with 1.4 equiv of ethyl chloroformate and 3.0 equiv of triethylamine in THF at $0^{\circ} \mathrm{C}$, followed by addition of 1.5 equiv of $2 \mathbf{a}$ in $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ (entry 2 of Table 2).

Subsequently, I checked the effect of various activating reagents on the amidation of 1a with $\mathbf{2 a}$ and the results are shown in Table 3. The reactions of 1a with $\mathbf{2 a}$ using methyl chloroformate afforded the corresponding amide 3aa in 82% yield (entry 1). In contrast, 2a reacted with the mixed carbonic carboxylic anhydrides prepared from 1a and ethyl, isopropyl or isobutyl chloroformate to give the corresponding amide $\mathbf{3 a a}$ in 97%, 96%, and 94% yields, respectively (entries 2-4). I decided to use ethyl chloroformate as the activating reagent because the yield of $\mathbf{3 a}$ a in the reaction with ethyl chloroformate was similar to those with isopropyl and isobutyl chloroformates, while ethyl chloroformate is cheaper than isopropyl and isobutyl chloroformates.

Then, Table 4 shows the results of the reactions of $\mathbf{1 a}$ with several kinds of α-amino acids $\mathbf{2 a - 2} \mathbf{j}$. I selected L-Phe-OH 2a, L-Phg-OH 2b, L-Trp-OH $\mathbf{2 i}$ and L-His-OH 2j as aromatic α-amino acid, L-Val-

Table 3. Effect of activating reagent on the amidation of 3-phenylpropanoic acid 1a with Lphenylalanine $\mathbf{2 a}^{\mathrm{a}}$

${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{1 a}, 0.70 \mathrm{mmol}$ of alkyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of $\mathbf{2 a}$. ${ }^{\mathrm{b}}$ Isolated yields.

OH 2c and L-tert-Leu-OH 2d as chain-branched α-amino acid, and L-Glu-OH 2e, L-Gln-OH $\mathbf{2 f}$, L-ThrOH $\mathbf{2 g}$ and L-Met-OH 2h as α-amino acid containing another functional group. The amidation of 1a with 2a proceeded efficiently to give the corresponding amide 3aa in excellent yield. Amide 3ab was obtained in 89% yield by the reaction of $\mathbf{1 a}$ with $\mathbf{2 b}$. Amino acids $\mathbf{2 c}$ and $\mathbf{2 d}$ were reacted with the activated 1a to afford the corresponding amides 3ac and 3ad in excellent yields in spite of sterically hindered side-chain such as isopropyl and tert-butyl groups. The coupling reaction of 1a and $\mathbf{2 e}$ containing the carboxy group gave the corresponding amide 3ae in lower yield with the recovered 1a because of the solubility in the reaction solution. In contrast, the amidation of $\mathbf{1 a}$ with $\mathbf{2 f}$ containing the amide group proceeded smoothly to afford the corresponding amide 3af in 85% yield because $\mathbf{2 f}$ is highly soluble in water. Amides $\mathbf{3 a g}$ and 3ah were prepared in 85% and 87% yields from $\mathbf{2 g}$ containing a hydroxyl group and $\mathbf{2 h}$ containing a sulfide group, respectively. Amino acid $\mathbf{2 i}$ possessing indole moiety was converted into the corresponding amide $\mathbf{3 a i}$ in 86% yield. The reaction with $\mathbf{2 j}$ gave N-ethoxycarbonylimidazolylamide 3aj in 19% yield due to nucleophilic nitrogen atom on the imidazole moiety.

Next, the results of the condensation of N-protected L-phenylalanines $\mathbf{5 a - 5 c}$ with several types of unprotected α-amino acids $\mathbf{2 a}$ and $\mathbf{2 c} \mathbf{- 2} \mathbf{j}$ via the corresponding mixed carbonic carboxylic anhydrides are shown in Table 5. I examined the effect of the protecting group on the N-terminal of the starting α-amino acids. I selected benzyl carbamate (Cbz), tert-butyl carbamate (Boc), and 9-fluorenylmethyl carbamate (Fmoc) as protecting group for the starting α-amino acids $\mathbf{5 a}, \mathbf{5 b}$, and $\mathbf{5 c}$, respectively. The reaction of Cbz-L-Phe-OH 5a with L-Val-OH 2c afforded the corresponding dipeptide 6ac in 75\% yield, and Boc-L-Phe-OH 5b was reacted with $\mathbf{2 c}$ to give the corresponding dipeptide $\mathbf{6 b c}$ in 82% yield. The dipeptide $\mathbf{6 c c}$ was obtained by the reaction of Fmoc-L-Phe-OH 5c with $\mathbf{2 c}$ in 77% yields. Generally, Boc group is cleavaged by strong acids such as HCl , trifluoroacetic acid (TFA), or p-toluenesulfonic acid (TsOH), providing t - BuOH or isobutylene and CO_{2} as the by-products. It is well known that tertbutylcation generated from deprotection of Boc group react readily with electron rich side-chain

Table 4. Amidation of 3-phenylpropanoic acid 1a with α-amino acids 2 without protection of C terminals ${ }^{\text {a }}$

Amide 3a: Yield ${ }^{\text {b }}$

${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{1 a}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of 2. ${ }^{\text {b }}$ Isolated yields. ${ }^{\text {c }}$ The N-ethoxycarbonyl derivative was obtained.
of α-amino acids (Cys, Met, Thr, Ser, and Trp). ${ }^{25}$ I was concerned about racemization under basic conditions although Fmoc group is cleavaged by weak bases such as NaHCO_{3}, piperidine, and morpholine. On the other hand, deprotection of Cbz group is usually carried out with hydrogenation using $\mathrm{H}_{2} / \mathrm{Pd}$-C under mild conditions. Hence, I decided to check the variety of the reaction using Cbz group.

The yield of the dipeptide 6ad was slightly lower due to bulky side-chain on L-tert-Leu 2d. The reaction of 5a with L-Glu-OH 2e did not proceed well because of the solubility, while the dipeptide 6af was synthesized from 5a and L-Gln-OH 2f in 87% yield. The two ${ }^{1} \mathrm{H}$ NMR spectra of the diastereomers 6aa and 6aa' prepared from the reactions of $\mathbf{5 a}$ with the enantiomers L-Phe-OH 2a and D-Phe-OH 2a' in 80% and 81% yield, respectively, showed no epimerization under the optimized reaction conditions. Subsequently, I tried to run the reactions of L-Thr-OH 2g, L-Met-OH $\mathbf{2 h}$ and L-Trp-OH 2i. Amino acid 5a reacted with $\mathbf{2 g}$ and $\mathbf{2 i}$ to afford the corresponding dipeptides $\mathbf{6 a g}$ and $\mathbf{6 a i}$ in 81% and 78% yields, respectively. The yield of the dipeptide $\mathbf{6 a h}$ synthesized from $\mathbf{5 a}$ and $\mathbf{2 h}$ containing sulfide group was 65%. In the case of L-His-OH $\mathbf{2 j}$ containing the imidazole moiety, the reaction gave N-ethoxycarbonyl dipeptide 6aj in 21% yield.

Finally, I applied this method to various $N-\mathrm{Cbz} \alpha$-amino acids $\mathbf{5 d - 5 i}$, and the results are shown in

Table 5. Synthesis of dipeptides $\mathbf{6}$ without protection of C-terminals in α-amino acids $\mathbf{2}^{\text {a }}$

Dipeptide 6: Yield ${ }^{\text {b }}$

6ac: 75\%

6ad: 68\%

6aa: 80\%

6ah: 65\%

6bc: 82\%

6ae: 36\%

6aa': 81\%

6ai: 78\%

6cc: 77\%

6af: 87\%

6ag: 81%

6aj: $21{ }^{\text {c }}$
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $5,0.70 \mathrm{mmol}$ of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of $\mathbf{2}$. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}}$ The N-ethoxycarbonyl derivative was obtained.

Table 6. The reaction of Cbz-Gly-OH 5d with L-Phe-OH 2a proceeded to afford the corresponding dipeptide 6da in 75\% yield, and Cbz-L-Ala-OH 5e reacted with 2a to provide the corresponding dipeptide 6ea in 79\% yield. Cbz-L-Val-OH 5f and Cbz-L-Leu-OH 5g as chain-branched α-amino acids were converted to the corresponding dipeptides $\mathbf{6 f a}$ and $\mathbf{6 g a}$ in 71% and 76% yields, respectively. Dipeptide 6ha was synthesized from Cbz-L-Met-OH 5h and 2a in 70\% yield. The activated Cbz-L-Trp-OH 5i coupled easily with $\mathbf{2 a}$ to produce the dipeptide $\mathbf{6 i a}$ in 85% yield because of the intramolecular $\pi-\pi$ stacking interaction ${ }^{26}$ between phenyl and indole moieties in $\mathbf{5 i}$.

Table 6. Application to synthesis of various dipeptides 6 with N - $\mathrm{Cbz} \alpha$-amino acids 5 and Lphenylalanine $\mathbf{2} \mathbf{a}^{\mathrm{a}}$

(Dipeptide 6: Yield ${ }^{\text {b }}$
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{5}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, and 1.5 mmol of triethylamine, and 0.75 mmol of $\mathbf{2 a} .{ }^{\text {b }}$ Isolated yields.

Section 2. Ecological base-conditioned preparation of dipeptides using unprotected α-amino acids containing hydrophilic side chains

It was described that the yields of amide 3ae and dipeptide 6ae prepared from carboxylic acid with L-Glu-OH 2e were decrease in low to moderate yields in Section 1. The use of L-Glu-OH as unprotected α-amino acid is not suitable in the amidation under neutral conditions because of its acidity and solubility.
α-Amino acids containing nucleophilic side chains such as hydroxy, mercapto, and carboxy groups also react easily with electrophiles in these side chains as undesired side reactions. Therefore, it is necessary for synthesis of peptides to protect not only the N-terminals of α-amino acids and the C terminals of the other reactants but also the nucleophilic side chains in order to avoid the undesired side reactions. In this Section, amidation of carboxylic acids with unprotected α-amino acid containing hydrophilic moiety under basic conditions was examined (Scheme 5).

In a preliminary investigation, a clear solution of 3-phenylpropanoic acid $1 \mathbf{1 a}$ and 1.5 equiv of unprotected α-amino acids $\mathbf{2 e}$, $\mathbf{2 f}$ and $\mathbf{2 k}-\mathbf{2 m}$ containing another hydrophilic moiety as a side chain in aqueous THF under neutral conditions was reacted to afford the corresponding amides 3ae, 3af and 3ak-3am as indicated in Table 7. The reactions of $\mathbf{1 a}$ with unprotected α-amino acids $\mathbf{2 k}$ and $\mathbf{2 1}$ containing hydroxy and mercapto groups gave the corresponding amides $\mathbf{3 a k}$ and $\mathbf{3 a l}$ in 90% and 87%

Scheme 5. Convenient condensation of N-protected α-amino acids with unprotected α-amino acids containing hydrophilic side chains under basic conditions

Table 7. Amidation of 3-phenylpropanoic acid $\mathbf{1 a}$ with unprotected α-amino acids $\mathbf{2}^{\text {a }}$

Amide 3: Yield ${ }^{\text {b }}$

3ak: 90\%

3al: 87\%

3am: 19\%

3ae: 59\%

3af: 85\%
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{1 a}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, and 1.5 mmol of triethylamine, and 0.75 mmol of $\mathbf{2}$. ${ }^{\mathrm{b}}$ Isolated yields.
yields, respectively. The amide 3am was obtained by the reaction of $\mathbf{1 a}$ with $\mathbf{2 m}$ containing aromatic hydroxy group in 19% yield due to low solubility of $\mathbf{2 m}$ in $\mathrm{H}_{2} \mathrm{O}$. The acid $\mathbf{1 a}$ was smoothly reacted with $2 \mathbf{f}$ containing amide group to give the corresponding amide 3af in 85% yield. In contrast, the coupling reaction of $\mathbf{1 a}$ with $\mathbf{2 e}$ containing carboxy group gave the corresponding amide 3ae in moderate yield. It is suggested that the amino group does not work well as a nucleophile due to protonation by the carboxy group of $\mathbf{2 e}$. Unprotected α-amino acids $\mathbf{2 k}, \mathbf{2 l}$, and $\mathbf{2 f}$ are easily dissolved in $\mathrm{H}_{2} \mathrm{O}$, but the solubility of $\mathbf{2 m}$ and $\mathbf{2 e}$ in $\mathrm{H}_{2} \mathrm{O}$ is low despite possession of hydrophilic side chains. A small amount of N-ethoxycarbonyl α-amino acids $\mathbf{4 e}, \mathbf{4 f}$ and $\mathbf{4 k}-\mathbf{4 m}$ were observed as a by-product on the basis of ${ }^{1} \mathrm{H}$ NMR analysis in all entries of Table 7.

Subsequently, I tried to resolve the problems in 3am and 3ae of Table 7. The amidation of 3phenylpropanoic acid 1a with L-Glu-OH 2e was examined under acidic and basic conditions and the results are summarized in Table 8. The reaction of $\mathbf{1 a}$ with $\mathbf{2 e}$ in aqueous HCl gave the corresponding

Table 8. Effect of additives on the amidation of 3-phenylpropanoic acid 1a with L-Glu-OH $\mathbf{2} \mathbf{e}^{\mathrm{a}}$

Entry	Additive	pH	Yield $/ \%$
1	HCl	1.0	5
2	Free	4.5	59
3	NaHCO_{3}	6.5	90
4	NaOH	7.5	93
5	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	8.0	92
6	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	9.0	93
7^{c}	$\mathrm{K}_{2} \mathrm{CO}_{3}$	12.0	36

$\overline{{ }^{\text {a }} \text { All reactions were carried out with } 0.50 \mathrm{mmol} \text { of } \mathbf{1 a}, 0.70 \mathrm{mmol} \text { of ethyl chloroformate, and } 1.5 \mathrm{mmol} \text { of }}$ triethylamine, 0.75 mmol of $\mathbf{2 e}$, and 0.75 mmol of an additive. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}}$ The pH value of the solution of 2 e and additive in 10 ml of $\mathrm{H}_{2} \mathrm{O}$ was measured with pH -test paper. ${ }^{\mathrm{d}}$ The reaction was carried out with 20 mmol of $\mathrm{K}_{2} \mathrm{CO}_{3}$.
amide $\mathbf{3 a e}$ in 5% yield, which was obviously decreased (entry 1). In contrast, $\mathbf{1 a}$ reacted with $\mathbf{2 e}$ under the basic conditions in the presence of NaHCO_{3} to afford 3ae in 90% yield (entry 3). The amide 3ae was obtained in 93% yield by the reaction using NaOH as a base (entry 4). The amidations in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$, which are stronger bases than NaHCO_{3}, gave 3ae in 92% and 93% yields, respectively (entries 5 and 6). In the presence of an excess amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$, the reaction of 1a with 2e proceeded in 36% yield (entry 7). I judged that NaHCO_{3} is better among these bases in the reaction by considering safety and handling.

A possible pathway of the amidation via the mixed carbonic carboxylic anhydride 7 is shown in Scheme 6. The carboxylic anhydride intermediate $\mathbf{8}$ is generated under the neutral conditions from the corresponding mixed carbonic carboxylic anhydride 7 by the nucleophilic attack of α-amino acid 2 . The free amine of $\mathbf{8}$ works as a good nucleophile and the corresponding product $\mathbf{3 a}$ is formed by the intramolecular reaction of $\mathbf{8}$ via the five-membered transition state (entries 3-6 in Table 8). The reaction rate is very slow under the acidic conditions due to the protonation of the nitrogen atom of 8 \mathbf{H}^{+}(entry 1 in Table 8). Then, the mixed carbonic carboxylic anhydride 7 reacts directly under the basic conditions with the amine part of $\mathbf{2}$ to give the corresponding product $\mathbf{3 a}$.

Next, I tried to synthesize the amides 3a using 3-phenylpropanoic acid 1a with several kinds of unprotected α-amino acids $\mathbf{2 e}, \mathbf{2 f}$ and $\mathbf{2 k} \mathbf{- 2 m}$ in an aqueous NaHCO_{3} solution as collected in Table 9. The coupling reaction of $\mathbf{1 a}$ with L-Ser-OH $\mathbf{2 k}$ proceeded smoothly to give the corresponding amide 3ak in 93\% yield. L-Cys-OH $2 \mathbf{l}$ was converted to the corresponding amide 3al in 96% yield. Although the amidation of $\mathbf{1 a}$ with L-Tyr-OH $\mathbf{2 m}$ afforded the corresponding amide $\mathbf{3 a m}$ in 25% yield under the basic conditions using $\mathrm{NaHCO}_{3}, \mathbf{2 m}$ reacted efficiently with $\mathbf{1 a}$ to give $\mathbf{3 a m}$ in 86% yield under the

Scheme 6. Possible pathway of the amidation via the mixed carbonic carboxylic anhydride 7

Table 9. Amidation of 3-phenylpropanoic acid 1a with unprotected α-amino acids 2 under the basic conditions using $\mathrm{NaHCO}_{3}{ }^{\text {a }}$

Amide 3: Yield ${ }^{\text {b }}$

3ak: 93\%

3al: 96\%

3am: 25\% (86\%) ${ }^{\text {c }}$

3ae: 90\%

3af: 83\%
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{1 a}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, and 1.5 mmol of triethylamine, 0.75 mmol of 2, and 0.75 mmol of $\mathrm{NaHCO}_{3} .{ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}} \mathrm{NaOH}$ was used instead of NaHCO_{3}.
basic conditions using NaOH . In the case of using NaHCO_{3} as a base, $\mathbf{2 m}$ is hardly dissolved in $\mathrm{H}_{2} \mathrm{O}$ as well as the neutral conditions. It is suggested that the solubility of $\mathbf{2 m}$ is improved by the production of sodium phenoxide in an aqueous NaOH solution, and that $\mathbf{2 m}$ works as a good nucleophile in the

Table 10. Synthesis of dipeptides $\mathbf{6}$ with Cbz-L-Phe-OH 5a and unprotected α-amino acids $\mathbf{2}$ under the basic conditions ${ }^{\text {a }}$

6ap: 74\% ${ }^{\mathrm{c}, \mathrm{f}}$

6ao: $68 \%^{\text {c }}$

6an: 74\%

6aq: $76 \%^{\text {c, }}{ }^{\text {f }}$
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{5 a}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, and 1.5 mmol of triethylamine, 0.75 mmol of 2, and 0.75 mmol of $\mathrm{NaHCO}_{3} .{ }^{\text {b }}$ Isolated yields. ${ }^{\mathrm{c}} \mathrm{NaOH}$ was used instead of $\mathrm{NaHCO}_{3}{ }^{\text {d }} 5.0 \mathrm{mmol}(1.5 \mathrm{~g})$ of $\mathbf{5 a}$ was used. ${ }^{\mathrm{e}}$ This reaction was carried out with Cbz-D-Phe-OH 5a'. ${ }^{\text {f }}$ Isobutyl chloroformate was used instead of ethyl chloroformate.
second step of the reaction. The amide 3af was prepared from $\mathbf{1 a}$ with L-Gln-OH $\mathbf{2 f}$ in 83% yield, which is similar to that of the reaction under the neutral conditions.

Then, I attempted to prepare dipeptides from Cbz-L-Phe-OH 5a and various unprotected α-amino acids 2 and these results were indicated in Table 10. L-Asp-OH 2n, L-Tyr(3-OH)-OH 2o, L-Tyr(3-I)$\mathrm{OH} \mathbf{2 p}$, and $\mathrm{L}-\mathrm{Tr}(5-\mathrm{OH})-\mathrm{OH} \mathbf{2 q}$ were added to the substrates containing aromatic alcohols as a side chain. The dipeptide 6ak was synthesized from 5a and l-Ser-OH 2k containing a hydroxy group in 82% yield. The reaction of $\mathbf{5 a}$ with L-Cys-OH $\mathbf{2 l}$ containing a mercapto group proceeded sufficiently to give the corresponding dipeptide $\mathbf{6 a l}$ in 86% yield. L-Tyr-OH $\mathbf{2 m}$ containing a phenolic hydroxy group reacted with the activated form of $\mathbf{5 a}$ to afford $\mathbf{6 a m}$ in 73% yield. L-Gln-OH $\mathbf{2 e}$ is most soluble in $\mathrm{H}_{2} \mathrm{O}$ among them and was converted to produce $\mathbf{6}$ af in 83% yield. Absence of racemization under the reaction conditions was investigated using Cbz-L-Phe-OH 5a and Cbz-d-Phe-OH 5a' as follows. The dipeptides 6ae and 6a'e were synthesized as a single diastereomer by the reactions of $\mathbf{5 a}$ and $\mathbf{5 a}$,

Table 11. The coupling reaction of N-protected α-amino acids 5 and unprotected α-amino acids $\mathbf{2}$ under the basic conditions ${ }^{\text {a }}$

${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{5}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, and 1.5 mmol of triethylamine, 0.75 mmol of $\mathbf{2}$, and 0.75 mmol of $\mathrm{NaHCO}_{3} .{ }^{\text {b }}$ Isolated yields. ${ }^{\mathrm{c}} \mathrm{NaOH}$ was used instead of NaHCO_{3}.
with L-Glu-OH 2e containing a carboxy group in 87% and 85% yields, respectively. The coupling reaction of $\mathbf{5 a}$ with L-Asp-OH 2n gave the corresponding dipeptide $\mathbf{6 a n}$ in 74% yield, which is caused by slightly lower solubility of $\mathbf{2 n}$ in $\mathrm{H}_{2} \mathrm{O}$ than that of $\mathbf{2 e}$. Both α-amino acids $\mathbf{5 a}$ and $\mathbf{2 o}$ containing a 3,4-dihydroxyphenyl moiety condensed to give $\mathbf{6 a o}$ in 68% yield. The formations of the dipeptides 6ap and $\mathbf{6 a q}$ by the reactions of $\mathbf{5 a}$ from $\mathbf{2 p}$ containing 4-hydroxy-3-iodophenyl moiety and $\mathbf{2 q}$ containing 5-hydroxyindole moiety succeeded via the activation of $\mathbf{5 a}$ by isobutyl chloroformate in 74% and 76% yields, respectively. The dipeptides 6ap and $\mathbf{6 a q}$ were easily separated from the N isobutyloxycarbonyl by-products $\mathbf{4 p} \mathbf{p}^{\prime}$ and $\mathbf{4 q} \mathbf{q}^{\prime}$ by silica gel chromatography. In the case of using ethyl chloroformate for the activating agent, it was difficult to isolate from the mixtures of the dipeptides 6ap, $\mathbf{6 a q}$ and the N-ethoxycarbonyl derivatives $\mathbf{4 p}, \mathbf{4 q}$, respectively.

Finally, I examined application to synthesis of various dipeptides $\mathbf{6 e}, \mathbf{6 f}, \mathbf{6 h}, \mathbf{6 j}$, and $\mathbf{6 k}$ under the reaction conditions, and the results are shown in Table 11. Cbz-L-Ala-OH 5e, Cbz-L-Val-OH $\mathbf{5 f}$ and Cbz-L-Met-OH 5h were selected as a N-protected α-amino acid. The reaction of Cbz-L-Ala-OH 5e
with L-Ser-OH $\mathbf{2 k}$ was carried out to afford the corresponding dipeptide $\mathbf{6 e k}$ in 79% yield. The reaction of $\mathbf{5 e}$ with L-Cys-OH $\mathbf{2 l}$ efficiently proceeded to give $\mathbf{6 e l}$ in 89% yield. The dipeptide $\mathbf{6 e m}$ was synthesized from 5e and l-Tyr-OH $\mathbf{2 m}$ in 71% yield, which was slightly lower than those of $\mathbf{6 e k}$ and 6el. Cbz-L-Val-OH 5f possessing a branched side chain reacted with $\mathbf{2 k}, \mathbf{2 l}$, and $\mathbf{2 m}$ to provide the corresponding dipeptides $\mathbf{6} \mathbf{f k}$, $\mathbf{6 f l}$, and $\mathbf{6 f m}$ in $81 \%, 75 \%$, and 71% yields, respectively. Cbz-L-MetOH $\mathbf{5 h}$ containing a mercapto group as a side chain was converted by the reactions of unprotected α amino acids $\mathbf{2 k}, \mathbf{2 l}$, and $\mathbf{2 m}$ to the corresponding dipeptides $\mathbf{6 h k}, \mathbf{6 h l}$, and $\mathbf{6 h m}$ in $77 \%, 78 \%$, and $\mathbf{6 6 \%}$ yields, respectively. Then, I attempted to synthesize the corresponding dipeptide from N-protected α amino acids containing hydrophilic side chains as the starting materials with L-Glu-OH $\mathbf{2 e}$. The dipeptide 6je was synthesized from N-Boc- O-Bn-L-Ser-OH 5j and 2e under basic conditions in 76\% yield. N^{α}-Boc- N^{ε}-Cbz-L-Lys-OH 5k containing bulky side chain was effectively converted into the corresponding dipeptide 6ke in 84% yield.

Section 3. Amidation of carboxylic acids via the mixed carbonic carboxylic anhydrides and its application to synthesis of antidepressant (1S,2R)-tranylcypromine

The synthesis of primary amide is limited due to disadvantages of using ammonia such as low nucleophilicity, toxicity, and gas under ordinary conditions. On the other hand, ammonium chloride is very useful as an ammonia source because it is easy to handle, inexpensive, and safe. Nezhad has reported the efficient primary amidation of carboxylic acids activated by tosyl chloride (TsCl) and 4.0 equiv of silica-supported ammonium chloride. ${ }^{27}$ Bhanage achieved the amidation of tert-butyl peroxybenzoate (TBPB) with ammonia to afford the corresponding primary amide with a stoichiometric amount of tert-butyl hydroperoxide as the by-product. ${ }^{28}$ Furthermore, the hydration of nitriles in the presence of acids, ${ }^{29 \mathrm{a}-29 \mathrm{c}}$ bases, ${ }^{29 \mathrm{~d}, 29 \mathrm{e}}$ the transition metal ${ }^{29 \mathrm{f}-29 \mathrm{~h}}$ and the rearrangement of oximes using transition metal catalysts ${ }^{30}$ have been developed as preparations for primary amides. Recently, interesting synthetic methods such as direct transformation of ethylarenes, ${ }^{31}$ methyl ketones, ${ }^{32}$ carbinols ${ }^{32}$ via tandem Lieben-Haller-Bauer reaction, aminocarbonylation of aryl halides with $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ as a carbonyl source, ${ }^{33}$ and amidation of ester using magnesium nitride $\left(\mathrm{Mg}_{3} \mathrm{~N}_{2}\right)$ as an ammonia source ${ }^{34}$ have also been reported. Excess amounts of ammonia source, high temperatures, toxic reagents such as transition metals, and/or complicated procedures are required for synthesis of primary amides.

The synthesis of dipeptide in the presence of ethyl chloroformate and triethylamine under neutral and basic conditions were described in Sections 1 and 2 of Chapter 1. Primary amidation of the mixed carbonic carboxylic anhydrides with ammonium chloride as an ammonia source was examined in this Section. Furthermore, application to synthesis of ($1 S, 2 R$)-(+)-N-Cbz-tranylcypromine 15 via Lossen

Scheme 7. Amidation via the mixed carbonic carboxylic anhydrides.

Table 12. Primary amidation of 3-phenylpropanoic acid $\mathbf{1 a}^{\mathrm{a}}$

Entry	Ammonia source	Yield ${ }^{\mathrm{e}} / \%$
1	$\mathrm{NH}_{3} / \mathrm{MeOH}^{\mathrm{b}}$	85
2	$\mathrm{NH}_{4} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}^{\mathrm{c}}$	85
3	$\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{H}_{2} \mathrm{O}^{\mathrm{d}}$	96
4	$\mathrm{MeCO}_{2} \mathrm{NH}_{4} / \mathrm{H}_{2} \mathrm{O}^{\mathrm{d}}$	97

$\overline{{ }^{\text {a }}}$ All reactions were carried out with 0.50 mmol of 1a, 0.70 mmol of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of ammonia source. ${ }^{\text {b }} 2.0 \mathrm{~mol} / \mathrm{L}$ solution in MeOH was used. ${ }^{\mathrm{c}} 28 \%$ aqueous solution was used. ${ }^{\mathrm{d}} 1.0 \mathrm{M}$ aqueous solution was used. ${ }^{\mathrm{e}}$ Isolated yield.
rearrangement was also presented (Scheme 7).
In a preliminary investigation, I optimized the conditions of an ammonia source $\left(\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{OH}\right.$, $\mathrm{NH}_{4} \mathrm{Cl}$, and $\mathrm{MeCO}_{2} \mathrm{NH}_{4}$), and the results are shown in Table 12. Primary amidation of 3phenylpropanoic acid 1a with $\mathrm{NH}_{3} / \mathrm{MeOH}$ and $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ via the mixed carbonic carboxylic anhydride in THF afforded 3-phenylpropanamide 9a in good yields (entries 1 and 2). The excellent yields were obtained by the reactions of $\mathbf{1 a}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{MeCO}_{2} \mathrm{NH}_{4}$ (entries 3 and 4). On the basis of these results, cost, and safety, I selected $\mathrm{NH}_{4} \mathrm{Cl}$ as the optimal ammonia source.

The results of the primary amidation of several types of carboxylic acids $\mathbf{1 a - 1 0}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ in the presence of ethyl chloroformate and triethylamine are collected in Table 13. The reaction of cinnamic acid $\mathbf{1 b}$ as a conjugated carboxylic acid afforded the corresponding primary amide $\mathbf{9 b}$ in 79% yield. 4-Methoxycinnamic acid 1c containing an electron donating group reacted with $\mathrm{NH}_{4} \mathrm{Cl}$ to give the corresponding primary amide $\mathbf{9 c}$ in 33% yield. The reaction of pivalic acid $\mathbf{1 d}$ proceeded easily to afford the corresponding primary amide $\mathbf{9 d}$ in excellent yield despite a bulky tert-butyl group on $\mathbf{1 d}$. Although benzamide 9e, 4-nitrobenzamide $\mathbf{9 f}$, and acetylsalicylamide $\mathbf{9 g}$ were synthesized from benzoic acid 1e, 4-nitrobenzoic acid 1f, and acetylsalicylic acid $\mathbf{1 g}$ in $64 \%, 92 \%$, and 56% yields, respectively, the yield of 4-methoxybenzamide $\mathbf{9 h}$ was low. It is suggested that the carbonyl carbon on the mixed carbonic anhydride of 4-methoxybenzoic acid $\mathbf{1 h}$ is deactivated by the strong electron donating effect of the methoxy group on the aromatic ring. The amidation of $\mathbf{1 h}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ via activation by isobutyl chloroformate was carried out to afford the corresponding amide $\mathbf{9 h}$ in 22%

Table 13. Primary amidation of carboxylic acids 1 with ammonium chloride ${ }^{a}$

(Primary amide 9: Yield ${ }^{\text {b }}$
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{1}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of a 1.0 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. ${ }^{\text {b }}$ Isolated yield. ${ }^{\mathrm{c}}$ Isobutyl chloroformate was used instead of ethyl chloroformate.
yield. The reactions of heteroaromatic carboxylic acid $\mathbf{1 i} \mathbf{- 1 0}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ were also examined. Picolinic acid $\mathbf{1 i}$, nicotinic acid $\mathbf{1} \mathbf{j}$, and isonicotinic acid $\mathbf{1 k}$ were converted into the corresponding primary amides $9 \mathbf{i - 9 k}$ in $97 \%, 84 \%$, and 95% yields, respectively. The low electron density of the pyridine ring contributes to these excellent yields. The primary amides 91-90 were prepared from the corresponding carboxylic acids 11-10 containing electron-rich heteroaromatic rings in moderate yields due to increasing electron density of the carbonyl carbons. Katritzky reported the amidation of carboxylic acid activated by 1-(methanesulfonyl)benzotriazole and triethylamine with ammonium hydroxide, in which the primary amides $9 \mathbf{9}$ and $\mathbf{9 i} \mathbf{- 9 1}$ were obtained in quantitative yields. ${ }^{20 b}$ Moreover, syntheses of the primary amides $\mathbf{9 a}, \mathbf{9 b}, \mathbf{9 d}, \mathbf{9 e}$, and $\mathbf{9 h}$ via the activation of carboxylic acids with DMT-MM were achieved in excellent yields by Kunishima. ${ }^{21 b}$ The yields of the primary amides $\mathbf{9 a}, \mathbf{9 b}, \mathbf{9 d}, \mathbf{9 f}$, and $\mathbf{9 i}$ $\mathbf{9 k}$ by my method are similar except for the primary amides $\mathbf{9 e}, \mathbf{9 h}$, and $\mathbf{9 1}$. It is suggested that the electrondensity of the expected active carbonyl groups is similar to that of the ethoxycarbonyl group on the corresponding mixed carbonic carboxylic anhydrides in the cases of primary amides $\mathbf{9 c}, \mathbf{9} \mathbf{e}, \mathbf{9} \mathbf{g}$, 9h, and 91-90.

Table 14. Synthesis of the primary amides derived from N-protected α-amino acids $\mathbf{5}^{\text {a }}$

Primary amide 10: Yield ${ }^{\mathrm{b}}$, ee^{c}
0a: $87 \%, 97 \%$ ee
${ }^{a}$ All reactions were carried out with 0.50 mmol of $\mathbf{5}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of a 1.0 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Determined by HPLC analysis with a mixture of hexane-isopropanol as an eluent using Chiralcel ($1.0 \mathrm{~mL} / \mathrm{min}$).

Next, I synthesized the primary amides $\mathbf{1 0}$ from the corresponding N-protected α-amino acids $\mathbf{5}$ without racemization under the optimized conditions and these results are shown in Table 14. Firstly, I checked the effect of protecting groups such as $\mathrm{Cbz}, \mathrm{Boc}$, and Fmoc. The mixed carbonic carboxylic anhydrides of Cbz-L-Phe-OH 5a, Boc-L-Phe-OH 5b, and Fmoc-L-Phe-OH 5c reacted with $\mathrm{NH}_{4} \mathrm{Cl}$ to give the corresponding primary amides $\mathbf{1 0 a}, \mathbf{1 0 b}$, and $\mathbf{1 0 c}$ in excellent yields, and no racemization was observed. The primary amide $\mathbf{1 0 f}$ was prepared from Cbz-L-Val-OH $\mathbf{5 f}$ in 93%. The reactions of Boc-L-Val-OH $\mathbf{5 I}$ and Fmoc-L-Val-OH 5m afforded the corresponding primary amides $\mathbf{1 0 1}$ and $\mathbf{1 0 m}$ in 98% and 98% yields with $>99 \%$ ee under the conditions, respectively. Furthermore, the primary amides $\mathbf{1 0 h}, \mathbf{1 0 n}$, and $\mathbf{1 0 0}$ were obtained in excellent yields by the reactions of Cbz-L-Met-OH 5h, Boc-L-Met-OH 5n, and Fmoc-L-Met-OH 50 containing a sulfide group. Cbz-L-Ala-OH 5e was converted to the corresponding primary amide $\mathbf{1 0 e}$ in good yield with $>99 \%$. The amidation of Cbz-L-Gln-OH 5p with $\mathrm{NH}_{4} \mathrm{Cl}$ under the conditions gave the corresponding primary amide $\mathbf{1 0} \mathbf{p}$ in 74% yield, but the enantiomeric excess of $\mathbf{1 0} \mathbf{p}$ was not determined by HPLC analysis because of low solubility of $\mathbf{1 0 p}$ in
the eluent. The low solubility of $\mathbf{5 p}$ possessing the hydrophilic side chain in THF gave a lower yield of $\mathbf{1 0 p}$ compared to the other primary amides. Cbz-L-Leu- $\mathrm{NH}_{2} \mathbf{1 0 g}$ as a branched α-amino acid was synthesized from Cbz-L-Leu-OH 5g in good yield with $>99 \%$ ee. The yield of the primary amide $\mathbf{1 0 i}$ was slightly lower due to the bulky side chain. Boc- O-Bn-L-Ser-OH $\mathbf{5 j}$ containing a hydrophilic side chain was condensed with $\mathrm{NH}_{4} \mathrm{Cl}$ via the mixed carbonic carboxylic anhydride to afford the corresponding primary amide $\mathbf{1 0} \mathbf{j}$ in 87% yield, and no racemization was observed in the reaction. The
 similar to those of the corresponding L-forms (see Experimental).

Hydroxamic acid is an important building block for many organic compounds. It is generally used as a starting material for preparation of amines, ureas, and carbamates via Lossen rearrangement. For the preparations of hydroxamic acids, there are a variety of reported reactions of carboxylic acids with toxic hydroxylamine using alkyl chloroformate, ${ }^{35}$ with hydroxylamine hydrochloride in the presence of the expensive coupling reagents such as 2,4,6-trichloro[1,3,5]-triazine (cyanuric chloride, TCT) ${ }^{36}$ and ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)acetate (4-NBsOXY), ${ }^{37}$ and so on. ${ }^{38}$ Tranylcypromine containing a cyclopropylamine skeleton is well known as a monoamine oxidase (MAO) inhibitor and has been used as an antidepressant medicine. The first synthesis and biological activity were reported by Burger ${ }^{39}$ and the mechanism of MAO for inhibition has also been elucidated Silverman. ${ }^{40}$ We have recently reported synthesis of tranylcypromine via catalytic enantioselective cyclopropanation in the presence of chiral ligand derived from L-phenylalanine in five steps. ${ }^{15 a}$ The synthetic method has several disadvantages such the use of toxic, expensive, excessive reagents, and harsh conditions.

Therefore, I applied the amidation using mixed carbonic carboxylic anhydride to the synthesis of $(1 S, 2 R)$ - N-Cbz-tranylcypromine 15. I examined the amidation of Cbz-L-Phe-OH 5a with various amine hydrochlorides $\mathbf{1 1 a - 1 1 h}$ for the preparation of N-hydroxy-2,3-methano-3-phenylpropanamide 8 and the results are indicated in Table 15. Ethylamine hydrochloride 11a and 2-phenethylamine hydrochloride $\mathbf{1 1 b}$ reacted with 5a to afford the corresponding secondary amide $\mathbf{1 2 a a}$ and $\mathbf{1 2 a b}$ in good yields. The secondary amide 12ac was synthesized from 5a using cyclohexylamine hydrochloride 11c in 84% yield. The amidation of 5 a with 1 -adamantanamine hydrochloride 11d effectively proceeded to afford the corresponding secondary amide $\mathbf{1 2 a d}$ in 87% yield despite sterically hindered primary amine. Dimethylamine hydrochloride 11e, diethylamine hydrochloride 11f, and piperidine hydrochloride $\mathbf{1 1} \mathrm{g}$ as a secondary amine were also examined. The amine hydrochlorides 11e, 11f, and 11 g worked as a good nucleophile under the conditions to give the corresponding tertiary amides $\mathbf{1 2 a e}, 12 \mathbf{a f}$, and $\mathbf{1 2} \mathbf{a g}$ in $85 \%, 72 \%$, and 84% yields, respectively. The hydroxamic acid $\mathbf{1 2} \mathbf{a h}$ was synthesized by the reaction of $\mathbf{5 a}$ with hydroxylamine hydrochloride $\mathbf{1 1 h}$ in moderate yield.

Finally, I optimized the reaction conditions for the amidation of $(2 S, 3 S)-(+)-2,3-$ methano-3phenylpropanoic acid 13 prepared via two oxidations from ($2 S, 3 S$)-(+)-2,3-methano-3phenylpropanol ${ }^{15 a}$ with hydroxylamine hydrochloride $\mathbf{1 1 h}$ and for Lossen rearrangement of $(2 S, 3 S)$ -

Table 15. Amidation of Cbz-L-Phe-OH 5a with primary or secondary amine hydrochlorides $\mathbf{1 1 a - 1 1} \mathbf{h}^{\text {a }}$

(2ac: 87%
${ }^{\text {a }}$ All reactions were carried out with 0.50 mmol of $\mathbf{5 a}, 0.70 \mathrm{mmol}$ of ethyl chloroformate, 1.5 mmol of triethylamine, and 0.75 mmol of a 1.0 M aqueous solution of amine hydrochlorides $11 .{ }^{\mathrm{b}}$ Isolated yield.
(+)-2,3-methano-3-phenylpropyl hydroxamic acid 14. The reactions of carboxylic acids to amines, which are well known as Hofmann, ${ }^{41}$ Curtius, ${ }^{42}$ Schmidt, ${ }^{43}$ and Lossen ${ }^{44}$ rearrangements, have been widely used for syntheses of various organic compounds. The main disadvantages of Hofmann rearrangement are the use of strong base and toxic bromine at high temperature. It is necessary to use explosive azide for Curtius and Schmidt rearrangements. On the other hand, the reaction conditions of Lossen rearrangement are milder than those of the other rearrangements. As a result, $(2 S, 3 S)-(+)-$ $\mathbf{1 4}$ was obtained in 82% yield by the amidation of $(2 S, 3 S)-(+)-\mathbf{1 3}$ with $\mathbf{1 1 h}$ under the optimized conditions, followed by Lossen rearrangement of $(2 S, 3 S)-(+)-14$ under Miller's conditions ${ }^{44 a}$ to afford $(1 S, 2 R)-(+)-N$-Cbz-tranylcypromine $\mathbf{1 5}$ in 87% yield (Scheme 8). I also tried to prepare ($1 S, 2 R$)-(+)15 under the following conditions, but failed. Methanesulfonyl chloride (MsCl), TsCl , and CDI were used instead of 4-nitrobenzenesulfonyl chloride (4-NsCl), but no better results were observed. The addition of $t-\mathrm{BuOH}$ instead of BnOH to the isocyanate intermediate did not work well because of steric hindrance. The enantiomeric excess of $(1 S, 2 R)-(+)-\mathbf{1 5}$ was not determined by HPLC analysis using general Chiralcels. Therefore, $(1 S, 2 R)-(+)-\mathbf{1 5}$ was deprotected under acidic conditions, followed by acetylation to afford $(1 S, 2 R)-(+)$ - N-acetyltranylcypromine 16 in quantitative yield with 82% ee, which was determined by HPLC analysis using Chiralcel OD as indicated in Scheme 8.

81\% ee

Scheme 8. Preparation of $(1 S, 2 R)-(+)$ - N-Cbz-tranylcypromine 15 via Lossen rearrangement

Chapter 2. Synthesis of memantine analogues containing a sigma-1 receptor activity as a candidate of anti-Alzheimer's medicine

Sigma receptor has recently attracted attention as a new action site of therapeutic medicine for several diseases such as amnesia, pain, stroke, retinal neuroprotection, HIV infection, cancer, amyotrophic lateral sclerosis (ALS), depression, and Alzheimer's disease. ${ }^{45}$ Sigma-1 and sigma-2 receptors, as the two established subtypes, are both highly expressed in the central nervous system (CNS) and can be distinguished by their distinct pharmacological profiles and molecular characteristics. ${ }^{46}$ It was reported that sigma-1 receptor regulates protein folding/degradation, endoplasmic reticulum (ER)/oxidative stress, and cell survival through the molecular chaperone activity. ${ }^{47}$ Therefore, the sigma-1 receptor is significantly influential in homeostasis of tissue, which is incapable of repairing, and it is anticipated that the agonists activated by sigma-1 receptor become the therapeutic agents of diseases caused by cell damage. For instance, it has been elucidated that patients with ALS carry mutations in sigma-1 receptor gene and dysfunction of sigma-1 receptor protein. ${ }^{48}$ It has been suggested that 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine $(\mathrm{SA} 4503)^{49}$ promotes regeneration and maturation of nerves as a selective sigma-1 receptor agonist. ${ }^{50}$ Currently, Phase II trials for SA4503 have been carried out in Europe as a medicine against CNS disorders, which are caused by major depression and stroke. ${ }^{51}$ The sigma agonists protect cultured neurons against amyloid $\beta(\mathrm{A} \beta)_{25-35}$-induced toxicity, ${ }^{52}$ and prevent memory deficits when $\mathrm{A} \beta_{25-35}$ is injected intracerebroventricularly in mice. ${ }^{53}$ Therefore, the induction or activation of sigma-1 receptor could improve clinical symptoms of Alzheimer's disease and protect against the associated neuropathologic changes. Indeed, tetrahydro- N, N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73), which exhibits neuroprotective effects and prevents tau hyperphosphorylation, has been examined in Phase IIa for Alzheimer's disease trials as a sigma-1 receptor agonist since January, 2015. ${ }^{54}$ As a part of interim studies for the planned analysis, it was announced that a positive dose-response relationship has been observed in its ongoing Phase IIa clinical trials of ANAVEX 2-73 as a potential treatment for mild-to-moderate Alzheimer's disease by November, 2015. For these reasons, sigma-1 receptor agonists have become key targets for therapeutic approaches to treat these diseases and elicited significant interest in medicinal chemistry.

Recently, $(+)-(2 R, 3 S)-4-(N$-adamant-1-yl- N-methylamino)-2,3-methano-2-phenylbutan-1-ol [(+)AMMP] was reported as a high affinity probe for sigma receptors by Marrazzo. ${ }^{55}$ However, the synthetic route of (+)-AMMP afforded 9% overall yield from 2-oxo-1-phenyl-3oxabicyclo[3.1.0]hexane as the starting material and the reagents used for synthesis of (+)-AMMP were relatively expensive. Additionally, it was necessary to prepare various chiral lactones as the starting materials in order to synthesize the substituted aryl analogues of $(+)$-AMMP. Therefore, it was desirable to develop more efficient and inexpensive synthetic method for synthesis of (+)-AMMP analogues. We have just achieved convenient asymmetric synthesis of (+)-AMMP from (Z)-2-

$P=$ protecting group

Scheme 9. Retrosynthetic analysis of memantine analogues containing a chiral cyclopropane skeleton via the three key reactions.

Scheme 10. Preparation of (Z)-4-tert-butyldiphenylsiloxy-3-arylbut-2-en-1-ols 19b-19e.
phenylbut-2-ene-1,4-diol 34a via the following reactions ${ }^{56}$ such as (i) the regioselective acetylation using PPL, ${ }^{12}$ (ii) the catalytic enantioselective Simmons-Smith reaction in the presence of our developed chiral ligand which was prepared cheaply and easily from L-phenylalanine in five steps, ${ }^{13}$ and (iii) the convenient amidation of mixed carbonic carboxylic anhydrides in aqueous organic solvent. ${ }^{14}$ Particularly, the cyclopropane moiety with two stereogenic carbon centers was constructed in quantitative yield with 71% ee via catalytic enantioselective Simmons-Smith reaction and the sterically hindered 1-adamantanamine moiety was successfully introduced by our developed amidation.

In this Chapter, I report a convenient enantioselective synthesis of (+)-AMMP and memantine analogues containing a chiral cyclopropane skeleton, 4-substituted aryl group, and 1-adamantanamine or memantine (3,5-dimethyl-1-adamantanamine) moiety via our developed reactions as shown in Scheme 9.

As optimized our previous report, ${ }^{56}$ tert-butyldiphenylsilyl group was chosen for preparation of various 4-O-protected (Z)-3-arylbut-2-en-1-ols 19b-19e. The allyl alcohols 19b-19e were converted from (Z)-3-arylbut-2-en-1-yl acetates 17b-17e in 87%-quantitative yields in 2 steps, which were prepared by our developed regioselective acetylation (Scheme 10).

Next, I attempted cyclopropanation of (Z)-4-tert-butyldiphenylsiloxy-3-arylbut-2-en-1-ols 19b-

Table 16. Simmons-Smith reaction of (Z)-4-tert-butyldiphenylsiloxy-3-arylbut-2-en-1-ols 19b-19e ${ }^{\text {a }}$

Entry	Product	Ar	Yield/\%	ee ${ }^{\mathrm{b}} / \%$
1	20b	4-MeOC66 H_{4}	70	36
2	20 c	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	Quant.	65
3	20d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	97	$66^{\text {c }}$
4	20e	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	97	$73^{\text {d }}$

${ }^{\text {a }}$ All reactions were carried out with (Z)-4-tert-butyldiphenylsiloxy-3-arylbut-2-en-1-ols 19b-19e, 2.0 equiv of $\mathrm{Et}_{2} \mathrm{Zn}$, and 3.0 equiv of $\mathrm{CH}_{2} \mathrm{I}_{2}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{\text {b }}$ Determined by HPLC analysis with a $95: 5$ mixture of hexane and 2-propanol as an eluent using Chiralcel OD ($1.0 \mathrm{~mL} / \mathrm{min}$). ${ }^{\mathrm{c}}$ Determined by HPLC analysis with hexane containing 0.1% 2-propanol as an eluent using Chiralcel OD-H after acetylation ($1.0 \mathrm{~mL} / \mathrm{min}$). ${ }^{\text {d }}$ Determined by HPLC analysis with a 99:1 mixture of hexane and 2-propanol as an eluent using Chiralcel OD ($1.0 \mathrm{~mL} / \mathrm{min}$).

Scheme 11. Preparation of the 2,3-methano-3-arylbutanoic acids 22b-22e.

19e as shown in Table 16. The reactions of allyl alcohols $19 \mathrm{~b}-19 \mathrm{e}$ with various oriented substituents on the aromatic ring worked smoothly. Methyl- and halo-substituted cinnamyl alcohols 19c-19e gave the correspondoing cyclopropane products $20 \mathrm{c}-\mathbf{2 0 e}$ in excellent yields with satisfactory enantioselectivities (entries 2-4). However, the reaction of methoxy-substituted cinnamyl alcohol 19b proceeded in 70% yield with low enantioselectivity (36% ee). It was suggested that the oxygen atom of the methoxy group acts as a Lewis base to the catalyst (entry 1 of Table 16).

Subsequently, the 2,3-methano-3-arylbutan-1-ols 20b-20e were oxidized with 2-iodoxybenzoic acid (IBX) in DMSO at rt for 3 h to afford the corresponding 2,3-methano-3-arylbutan-1-als 21b-21e in $94-96 \%$ yields, which were converted with $\mathrm{NaClO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$, and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ at rt for 3 h to the corresponding 2,3-methano-3-arylbutanoic acids 22b-22e in $95-98 \%$ yields as indicated in Scheme 11.

Next, the amidation of the 2,3-methano-3-arylbutanoic acids 22b-22e with 1-adamantanamine

Scheme 12. Preparation of the 2,3-methano-3-arylbutanamides 23b-23e.

Table 17. Optimaization of the reaction conditions for reduction of N-adamant-1-yl-2,3-methano-3phenylbutanamide (23') ${ }^{\text {a }}$

$\overline{{ }^{\text {a }}}$ All reactions were carried out with 0.18 mmol of $\mathbf{2 3}$ '. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ The reaction was carried out with 0.18 mmol of $\mathbf{2 3}$ ', 2.5 equiv of NaBH_{4}, and 1.0 equiv of I_{2} in anhydrous THF. ${ }^{\text {d }} \mathbf{2 3}$ " was used as the starting material instead of $\mathbf{2 3}$ '.
sulfate was performed in the optimized conditions ${ }^{56}$ to afford the corresponding 2,3-methano-3arylbutanamides 23b-23e in 73-97\% yields as indicated in Scheme 12.

Furthermore, the conditions for the reduction of N-adamant-1-yl-2,3-methano-3phenylbutanamide 23' were optimized and the results are shown in Table 17. The reaction of 23' with 2.0 equiv of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in anhydrous THF at $40{ }^{\circ} \mathrm{C}$ for 49 h afforded N-adamant-1-yl-3phenylpropylamine $\mathbf{2 5}^{\prime}$ in 6% yield (entry 1). The use of 5.0 equiv of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in anhydrous THF at rt to $40^{\circ} \mathrm{C}$ for 71 h gave the desired amine $\mathbf{2 5}^{\prime}$ in $\mathbf{5 8 \%}$ yield (entry 3), and $\mathbf{2 5}$ ' was obtained in $\mathbf{6 9 \%}$ yield when the reaction was carried at rt to $70^{\circ} \mathrm{C}$ for 23 h in anhydrous toluene (entry 4). The yield obtained when Meyer's method was used was 20% (entry 5). ${ }^{57}$ The yield (88%) greatly improved under the conditions using 5.0 equiv of LiAlH_{4} in toluene at 40 to $70{ }^{\circ} \mathrm{C}$ for 19 h (entry 8). The reduction of the chiral amide $\mathbf{2 3}$ " containing a cyclopropane ring with 5.0 equiv of LiAlH_{4} proceeded smoothly at $70^{\circ} \mathrm{C}$ for 13 h to afford the corresponding chiral amine $\mathbf{2 5}$ " in 92% yield without cleavage

Scheme 13. Optimal preparation pathway to the chiral 2,3-methano-2-pheylbutan-1-ol 25a.

Scheme 14. Preparation of the chiral 2,3-methano-2-arylbutan-1-ols 25b-25e in two steps from the chiral 2,3-methano-3-arylbutanamides 23b-23e.

Scheme 15. Synthesis of (+)-AMMP analogues by methylation from the chiral 2,3-methano-2-arylbutan-1-ols 25b-25e.
of the cyclopropane skeleton (entry 9 of Table 17).
Subsequently, the silyl group of 23a was cleaved by tetrabutylammonium fluoride (TBAF) to give the corresponding chiral 4-hydroxyamide $\mathbf{2 4 a}$ in 93% yield, followed by reduction with LiAlH_{4} to afford $\mathbf{2 5 a}$ in 87% yield with 86% ee. The overall yield in 2 steps was 81%, which is better than the yield of $\mathbf{2 5 a}$ in our previous report (Scheme 13). ${ }^{56}$

The chiral 2,3-methano-2-arylbutan-1-ols 25b-25e were prepared efficiently from the corresponding chiral amides 23b-23e in excellent yields in two steps as described in Scheme 14. I was able to convert (+)-cis-4-tert-butyldiphenylsiloxy-2,3-methano-3-arylbutan-1-ols 20b-20e into the corresponding chiral alcohols $\mathbf{2 5 b} \mathbf{- 2 5 e}$ in five steps without the significant loss of enantiomeric excess in all cases.

Additionally, (+)-AMMP analogues 26b-26e were acquired in 58-65\% yields via methylation of the amino alcohols $\mathbf{2 5 b} \mathbf{- 2 5 e}$ with MeI as indicated in Scheme 15.

Finally, I succeeded in synthesizing memantine (3,5-dimethyl-1-adamantanamine) analogue 30 containing a chiral cyclopropane skeleton as shown in Scheme 16. The amidation of 2,3-methano-3phenylbutanoic acid 22a prepared from (Z)-2-phenylbut-2-ene-1,4-diol 34a in six steps ${ }^{56,58}$ with

Scheme 16. Synthesis of memantine analogue containing a chiral cyclopropane skeleton from the 34a.
memantine hydrochloride worked easily to give the corresponding amide in 84% yield, followed by desilylation, reduction, and methylation to afford the memantine derivative 30 in 40% overall yield with 74% ee.

We have recently reported the detail of the cyclopropanation of various allylic alcohols using L-tyrosine-derived fluorous disulfonamide as a chiral ligand and described the proposed reaction pathway (Scheme 17) and a possible transition state (Fig. 1) of the cyclopropanation. ${ }^{59,}{ }^{60}$ The iodomethylzinc alkoxide $\mathbf{3 1}$ is produced by the addition of $\mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{I}\right)_{2}$ to the allylic alcohol 19, and complex $\mathbf{3 2}$ is formed from the species $\mathbf{3 1}$ and Lewis acid. The cyclopropane derivative $\mathbf{2 0}$ is generated from the disulfonamide $\mathbf{L} 1$-zinc complex (Lewis acid) via complexes $\mathbf{3 2}$ and 33. I propose a possible transition state for the enantioselective cyclopropanation with L-phenylalanine-derived disulfonamide L1 as shown in Figure 1. I speculated that the zinc derived from the carbenoid to the double bond of allylic alcohol 19 is accelerated by the oxygen atom of the methanesulfonamide group. Allylic alcohol 19 would take the opposite side of the benzene ring derived from L-phenylalanine in order to avoid the steric hindrance, then the carbenoid approaches the allylic alcohol $\mathbf{1 9}$ from the opposite side of the p-toluenesulfonamide group.

Scheme 17. Proposed reaction pathway of the cyclopropanation

Figure 1. Possible transition state of the cyclopropanation

Conclusions

Chapter 1. Amidation of carboxylic acids via mixed carboxylic carbonic anhydrides

Dipeptides were obtained in high yields from the reaction of N-protected α-amino acids 5 with unprotected α-amino acids 2 via the corresponding mixed carbonic carboxylic anhydrides using ethyl chloroformate and triethylamine under neutral conditions. Unprotected α-amino acids 2 containing a hydrophilic side chain such as aliphatic alcohol, aromatic alcohol, thiol, carboxylic acid, and amide are also suitable as a nucleophile and were reacted with mixed carbonic carboxylic anhydrides under the basic conditions to afford the corresponding dipeptide in $66-96 \%$ yields. No racemization was observed by ${ }^{1} \mathrm{H}$ NMR analysis (Scheme 18). ${ }^{17 \mathrm{a}, 17 \mathrm{~b}}$ Next, primary amidation of N-protected α-amino acids 5 with $\mathrm{NH}_{4} \mathrm{Cl}$ in the presence of ethyl chloroformate and triethylamine gave the corresponding primary amides 10 in 74% to quantitative yields with $97->99 \%$ ee (Scheme 19). ${ }^{17 \mathrm{c}}$ Furthermore, the application to the synthesis of $(1 S, 2 R)-(+)-N$-Cbz-tranylcypromine $\mathbf{1 5}$ via Lossen rearrangement have been also achieved in $\mathbf{7 1 \%}$ overall yield with 82% ee in three steps from $(2 S, 3 S)-(+) \mathbf{- 1 3}$. Our method is convenient and green because of inexpensive reagents, mild conditions, and safe byproducts, such as triethylamine hydrochloride, carbon dioxide, and the corresponding alcohols.

Scheme 18. Preparation of dipeptides 6 without protection of C-terminal under neutral or basic conditions

Scheme 19. Primary amidation of N-protected α-amino acids 5 via the mixed carbonic carboxylic anhydrides

Chapter 2. Synthesis of memantine analogues containing sigma-1 receptor activity as a candidate of anti-Alzheimer's medicine

I have achieved the convenient enantioselective synthesis of (+)-AMMP analogues 26b-26e containing a chiral cyclopropane skeleton in 19-39\% overall yields from the starting (Z)-2-arylbut-2-ene-1,4-diols 34b-34e without the significant loss of enantiomeric excess. The reagents used in our synthetic route are relatively cheap, and the key reactions are three as follows; (i) the regioselective acetylation using PPL, ${ }^{12}$ (ii) the catalytic enantioselective Simmons-Smith reaction in the presence of L-phenylalanine-derived disulfonamide, ${ }^{13}$ and (iii) the convenient amidation of mixed carbonic carboxylic anhydrides in aqueous organic solvent. ${ }^{14}$ Additionally, I have also succeeded in synthesizing memantine analogue 30 containing a chiral cyclopropane skeleton with 74% ee in 40% overall yield from (Z)-2-phenylbut-2-ene-1,4-diol 34a (Scheme 20).

Scheme 20. Convenient enantioselective total synthesis of memantine analogues via the three key reactions

Experimental

1. General

All reagents were used without purification except for $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was washed with water twice, dried over molecular sieves $4 \AA$, heated at reflux for 24 h with CaH_{2}, and distilled before use. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Bruker UltrashieldTM 400 Plus (400 MHz) spectrometer. The chemical shifts of ${ }^{1} \mathrm{H}$ NMR spectra are expressed in parts per million downfield from tetramethylsilane $(=0.00)$ or dimethyl sulfoxide $-d^{6}(=2.50)$ as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were calibrated with tetramethylsilane $(=0.00)$ or dimethyl sulfoxide- $d^{6}(=39.5)$. Chemical shifts () are reported in ppm, and spin-spin coupling constants (J) are given in Hertz. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). The high-resolution mass spectra (HRMS) of the compounds with a high molecular weight were recorded using a Waters LCT Premier (ESI-TOF-MS) spectrometer. Reactions were monitored using thin-layer chromatography with silica gel $60 \mathrm{~F}_{254}$. Purification of the reaction products was carried out by column chromatography using silica gel ($64-210 \mathrm{mesh}$). HPLC analysis was carried out with Chiralcel OD, OJ, OB, OK ($10 \mathrm{~mm}, 46 \times 250 \mathrm{~mm}$), Chiralpak AD, AS (10 mm , $46 \times 250 \mathrm{~mm}$), and Chiralcel OD-H ($5 \mathrm{~mm}, 46 \times 250 \mathrm{~mm}$) coupled to a photodiode array detector or a dual λ absorbance detector, and HPLC grade solvents were used for HPLC analysis. Melting points were determined with a hot plate apparatus. Optical rotations were measured on a digital polarimeter with a sodium lamp at room temperature. Infrared (IR) spectra were recorded on HORIBA FT-IR Fourier transform infrared spectrophotometer.

Chapter 1. Amidation of carboxylic acids via mixed carboxylic carbonic anhydrides

Section 1. Convenient green preparation of dipeptides using unprotected α-amino acids under neutral conditions

2. Typical procedure for amidation of 3-phenylpropanoic acid 1a with L-Phe-OH 2a

To a colorless solution of $75 \mathrm{mg}(0.50 \mathrm{mmol})$ of 3-phenylpropanoic acid $\mathbf{1 a}$ in 10 mL of THF were added at $0{ }^{\circ} \mathrm{C} 67 \mu \mathrm{~L}(0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}(1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}$, a solution of $124 \mathrm{mg}(0.75 \mathrm{mmol}, 1.5$ equiv) of L-Phe-OH 2a in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and concentrated in vacuo. To the residue was added a 1.0 M aqueous HCl solution to adjust to pH 2 . The resulted suspension was extracted with 50 mL of EtOAc, washed with 10 mL of brine, and dried over MgSO_{4}. The crude product was chromatographed on silica gel with a $2: 1$
mixture of hexane and EtOAc containing $1 \% \mathrm{AcOH}$ to afford $145 \mathrm{mg}(97 \%$ yield) of N -(3-phenylpropanoyl)-L-Phe-OH 3aa.

2.1. \mathbf{N}-(3-phenylpropanoyl)-L-Phe-OH 3aa

Colorless powder; mp: $167-169{ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}=+1.42(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.45$ (ddd, $J=1.0,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}$), 2.45 (ddd, $J=1.0,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}$), 2.79 (dd, $J=7.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $2.91\left(\mathrm{dd}, J=8.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.15(\mathrm{dd}, J=5.0$, $13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), $4.64(\mathrm{dd}, J=5.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 7.13-7.17,7.18-7.26(\mathrm{~m}, \mathrm{~m}, 5 \mathrm{H}$, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 30.5,36.2,36.4,52.9,124.9,125.4,127.1,127.1$, $127.2,128.0,136.3,139.9,172.7,172.8 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 320.1257, found: 320.1283 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3307(\mathrm{OH}), 1708\left(\mathrm{CO}_{2}\right), 1600(\mathrm{CON})$.

2.2. \boldsymbol{N}-(3-phenylpropanoyl)-L-Phg-OH 3ab

Colorless powder; mp: $152-153{ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=+108.4(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.57\left(\mathrm{ddd}, J=1.5,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}\right), 2.57\left(\mathrm{ddd}, J=1.5,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.90(\mathrm{dd}$, $\left.J=7.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}), 7.12-7.24,7.30-7.34\left(\mathrm{~m}, \mathrm{~m}, 5 \mathrm{H}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right)$; ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD-d ${ }^{4}$): $\delta 32.8,38.5,58.2$. 127.2, 128.8, 129.3, 129.5, 129.5, 129.8, 138.2, 142.2, 173.8, 174.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 306.1101, found: 306.1086; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3338(\mathrm{OH}), 1698\left(\mathrm{CO}_{2}\right), 1616(\mathrm{CON})$.

2.3. N-(3-phenylpropanoyl)-L-Val-OH 3ac

Colorless powder; mp: 141-143 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21} \mathrm{D}=-22.9(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 0.87\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right), 2.06-2.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.57(\mathrm{ddd}, J=3.9,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{CO}$), 2.58 (ddd, $J=3.9,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}$), $2.91\left(\mathrm{dd}, J=7.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.28$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}$), 7.13-7.17, 7.20-7.27 (m, m, 1H, 4H, C $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-$ $\left.d^{4}\right): \delta 18.3,19.6,31.7,32.9,59.1,127.2,129.5,129.5,142.2,175.1,175.4$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 272.1257$, found: 272.1243 ; IR $\left(\mathrm{KBr}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3338(\mathrm{OH}), 1699\left(\mathrm{CO}_{2}\right)$, 1616 (CON).

2.4. \boldsymbol{N}-(3-phenylpropanoyl)-L-tert-Leu-OH 3ad

Colorless powder; mp: 183-185 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{26} \mathrm{D}=-9.72(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 0.94\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.59\left(\mathrm{ddd}, J=6.5,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}\right), 2.59(\mathrm{ddd}, J=6.5,7.7,7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}$), 2.91 (dd, $J=7.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.25 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHCO}$), 7.13-7.17, 7.20-7.26 (m, $\left.\mathrm{m}, 1 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- $\left.d^{4}\right): \delta 27.2,32.9,34.8,38.5,62.2,127.2,129.5,142.2$, 174.4, 175.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 286.1414$, found: 286.1386; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3348(\mathrm{OH}), 1699\left(\mathrm{CO}_{2}\right), 1610(\mathrm{CON})$.

2.5. \mathbf{N}-(3-phenylpropanoyl)-L-Glu-OH 3ae

Colorless powder; mp: 131-134 ${ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}=-28.4(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 1.80-1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{A} \mathrm{CH}\right), 2.07-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{B} \mathrm{CH}\right), 2.22-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.54(\mathrm{dd}$, $J=7.4,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.91\left(\mathrm{dd}, J=7.4,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.40(\mathrm{dd}, J=4.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}$, CHCO), 7.15-7.18, 7.20-7.27 (m, m, 1H, 4H, C6 H_{5}); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD-d ${ }^{4}$): $\delta 27.9,31.2$, $32.8,38.7,53.0,127.3,129.5,129.5,142.2,175.0,175.4,176.4$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 302.0999$, found: 302.1010 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3276(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right)$, 1653 (CON).

2.6. \boldsymbol{N}-(3-phenylpropanoyl)-L-Gln-OH 3af

Colorless powder; mp: 141-144 ${ }^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}=-19.2(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 1.83-1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{A} \mathrm{CH}\right), 2.07-2.24\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.55(\mathrm{dd}, J=7.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), 2.92 (dd, $J=7.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.37 (dd, $J=4.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}$), 7.14-7.18, 7.21-7.28 (m, m, 1H, 4H, C ${ }_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 28.6,32.7,32.8,38.7,53.3,127.3$, 129.5, 129.5, 142.2, 175.0, 175.4, 177.7; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 301.1159, found: 301.1184; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3292(\mathrm{OH}), 1724\left(\mathrm{CO}_{2}\right), 1646(\mathrm{CON})$.

2.7. N-(3-phenylpropanoyl)-L-Thr-OH 3ag

Colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}=-7.04(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right): \delta 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61\left(\mathrm{dd}, J=7.4,8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.94\left(\mathrm{dd}, J=7.4,8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.24-4.29$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.41(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 7.13-7.20,7.21-7.27\left(\mathrm{~m}, \mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 20.4,32.8,38.7,59.1,68.4,127.2,129.5,129.5,142.2,173.9,175.7 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 274.1050$, found: 274.1040; IR $\left(\mathrm{NaCl}, v_{\text {max }} / \mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right)=3325(\mathrm{OH}), 1732\left(\mathrm{CO}_{2}\right), 1653(\mathrm{CON})$.

2.8. \boldsymbol{N}-(3-phenylpropanoyl)-L-Met-OH 3ah

Yellow powder; mp: 73-75 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21}{ }_{\mathrm{D}}=-28.9(c 0.98, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right): \delta 1.80-$ $1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{~S}\right), 2.01-2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{~S}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.27-2.41(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 2.54 (dd, $J=7.4,7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.91 (dd, $J=7.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.48$4.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}), 7.14-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- $\left.d^{4}\right): \delta 15.2,31.2,32.2$, $32.8,38.7,52.6,127.3,129.5,129.5,142.2,175.2,175.4 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 304.0978$, found: 304.0953; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3302(\mathrm{OH}), 1705\left(\mathrm{CO}_{2}\right)$, 1647 (CON).

2.9. N-(3-phenylpropanoyl)-L-Trp-OH 3ai

Colorless powder; mp: $160-162{ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=+1.30(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.44\left(\mathrm{dd}, J=7.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.78\left(\mathrm{ddd}, J=3.1,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.78(\mathrm{ddd}, J$
$\left.=3.1,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.11\left(\mathrm{dd}, J=8.0,14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H_{A} \mathrm{CH}\right), 3.30(\mathrm{dd}, J=5.0,14.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}\right), 4.71(\mathrm{dd}, J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 6.96,7.00,7.06-7.21,7.32,7.53(\mathrm{~s}, \mathrm{t}, \mathrm{m}, \mathrm{d}, \mathrm{d}, J$ $=7.4,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 6 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, indole, $\mathrm{C}_{6} \mathrm{H}_{5}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 28.6,32.7$, $38.8,54.7,111.1,112.3,119.3,119.8,122.4,124.4,127.2,128.9,129.4,129.5,138.1,142.2,175.1$, 175.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 359.1366$, found: 359.1348; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right)=3410(\mathrm{OH}), 1734\left(\mathrm{CO}_{2}\right), 1655(\mathrm{CON})$.

3. Typical procedure for amidation of Cbz-L-Phe-OH 5a with L-Val-OH 2c

To a colorless solution of $150 \mathrm{mg}(0.50 \mathrm{mmol})$ of Cbz-L-Phe-OH 5a in 10 mL of THF were added at $0{ }^{\circ} \mathrm{C} 67 \mu \mathrm{~L}$ ($0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}(1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}$, a solution of $88 \mathrm{mg}(0.75 \mathrm{mmol}, 1.5$ equiv) of L-Val$\mathrm{OH} 2 \mathbf{c}$ in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 \min at $0^{\circ} \mathrm{C}$ and concentrated in vacuo. To the residue was added a 1.0 M aqueous HCl solution to adjust to pH 2 . The resulted suspension was extracted with 50 mL of EtOAc, washed with 10 mL of brine, and dried over MgSO_{4}. The crude product was chromatographed on silica gel with a $1: 1$ mixture of hexane and EtOAc containing $1 \% \mathrm{AcOH}$ to afford 149 mg (75% yield) of Cbz-L-Phe-L-Val-OH $\mathbf{6 a c}$.

3.1. Cbz-L-Phe-L-Val-OH 6ac

Colorless powder; mp: $140-143{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-7.70(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $0.84\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.13-2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.08(\mathrm{dd}$, $\left.J=7.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.46-4.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCO} \times 2), 5.07\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.11\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.45(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.36(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.18-7.37\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\times 2$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.6,18.8,30.9,38.2,56.3,57.2,67.2,127.1,128.1,128.3,128.6$, 128.8, 129.3, 136.1, 156.1, 171.2, 174.7; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 399.1914$, found: 399.1918 ; IR $\left(\mathrm{KBr}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3307(\mathrm{OH}), 1697\left(\mathrm{CO}_{2}\right), 1635(\mathrm{CON})$.

3.2. Boc-L-Phe-L-Val-OH 6bc

Colorless powder; mp: $64-67{ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=-5.34(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, MeOD- $\left.d^{4}\right): \delta$ $0.96\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.13-2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.80(\mathrm{dd}, J=$ $\left.4.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.12\left(\mathrm{dd}, J=4.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.32-4.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCO} \times 2)$, 7.17-7.26 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD-d ${ }^{4}$): $\delta 18.3,19.6,28.7,32.1,39.0,57.3,58.9$, 80.7, 127.7, 129.4, 130.4, 138.7, 157.7, 174.4, 174.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 387.1890$, found: 387.1901 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3309(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1652(\mathrm{CON})$.

3.3. Fmoc-L-Phe-L-Val-OH 6cc

Colorless powder; mp: 93-95 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-19.6(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right): \delta$ $0.96\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right), 2.13-2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.85(\mathrm{dd}, J=9.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{CH}_{4} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.12\left(\mathrm{dd}, J=4.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.11-4.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2} \mathrm{O}\right.$, $\left.\mathrm{CHCH}_{2} \mathrm{O}\right), 4.45-4.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.16-7.30,7.37,7.55-7.58,7.78(\mathrm{~m}, \mathrm{t}, \mathrm{m}, \mathrm{d}, J=7.6,7.6$ $\mathrm{Hz}, 7 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$, fluorenyl); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 18.3,19.6,32.0,39.0,57.7$, $59.0,59.1,68.1,121.0,126.3,126.3,127.8,128.2,128.8,129.5,130.4,138.7,142.6,145.2,158.3$, 174.3, 174.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 509.2047, found: 509.2039; IR $\left(\mathrm{KBr}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3301(\mathrm{OH}), 1718\left(\mathrm{CO}_{2}\right), 1691(\mathrm{CON}), 1656(\mathrm{CON})$.

3.4. Cbz-L-Phe-L-tert-Leu-OH 6ad

Colorless powder; mp: $164-167{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-14.3(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \times 3\right), 2.83\left(\mathrm{dd}, J=9.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.11(\mathrm{dd}, J=5.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.48\left(\mathrm{dd}, J=5.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.09(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.17-7.32 (m, 10H, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 27.1,35.2,38.9,57.8$, $61.9,67.6,127.6,128.7,129.0,129.5,130.4,138.2,138.5,158.3,173.8,174.0$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 435.1890, found: 435.1890; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$) $=3327(\mathrm{OH})$, $1699\left(\mathrm{CO}_{2}\right), 1635(\mathrm{CON})$.

3.5. Cbz-L-Phe-L-Glu-OH 6ae

Colorless powder; mp: $149-152{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-12.1(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: δ 1.89-1.99 (m, 1H, $\mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}$), 2.15-2.23 (m, $1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CO}$), $2.39(\mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $2.84\left(\mathrm{dd}, J=9.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.15\left(\mathrm{dd}, J=5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.40-$ $4.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \times 2), 4.99\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.18-7.33 (m, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 28.0,31.1,39.0,53.1,57.8,67.6$, 127.8, 128.8, 129.0, 129.5, 130.4, 138.2, 138.6, 158.3, 174.2, 174.6, 176.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}: 429.1656$, found: 429.1672 ; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3286(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right)$, 1660 (CON).

3.6. Cbz-L-Phe-L-GIn-OH 6af

Colorless powder; mp: $179-182{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=-10.2(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 1.91-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}\right), 2.16-2.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.85(\mathrm{dd}, J=9.7,14.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.16\left(\mathrm{dd}, J=4.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.38-4.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \times 2), 4.99(\mathrm{~d}, J=12.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.17-7.33\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD-d ${ }^{4}$): $\delta 28.8,32.7,39.0,53.2,57.8,67.6,127.8,128.7,129.0,129.5,129.5,130.4$, 138.2, 138.6, 158.3, 174.3, 174.6, 177.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 450.1636 , found: 450.1606 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3309(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1654(\mathrm{CON})$.

3.7. Cbz-L-Phe-L-Phe-OH 6aa

Colorless powder; mp: $148-151{ }^{\circ} \mathrm{C} ;[\alpha]^{24} \mathrm{D}=-10.5(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$:
$\delta 2.76\left(\mathrm{dd}, J=9.7,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.00\left(\mathrm{dd}, J=8.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \cdot \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.08(\mathrm{dd}, J=$ $5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.19\left(\mathrm{dd}, J=5.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.36(\mathrm{dd}, J=5.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 4.65\left(\mathrm{dd}, J=5.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$ '), $4.97\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.01(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), $7.15-7.33\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3\right)$; ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD-d ${ }^{4}$): $\delta 38.5,39.1,55.0$, $57.7,67.6,127.7,127.8,128.7,128.9,129.4,129.5,130.4,130.5,138.2,138.6,158.2,173.9,174.2$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 447.1914$, found: 447.1890; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=$ $3307(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1695(\mathrm{CON}), 1660(\mathrm{CON})$.

3.8. Cbz-L-Phe-d-Phe-OH 6aa'

Colorless powder; mp: $109-112{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-19.2(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.67\left(\mathrm{dd}, J=9.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.92-2.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.16(\mathrm{dd}, J=$ $\left.5.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.37(\mathrm{dd}, J=5.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.66(\mathrm{dd}, J=5.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.96\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.02\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.08-7.33\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\times 3) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- $\left.d^{4}\right): \delta 38.4,39.3,54.9,57.7,67.6,127.7,127.9,128.7,129.0,129.4$, 129.5, 129.6, 130.4, 130.4, 138.2, 138.5, 158.1, 173.8, 174.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 469.1734$, found: 469.1726 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3307(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right)$, 1652 (CON).

3.9. Cbz-L-Phe-L-Thr-OH 6ag

Colorless powder; mp: $141-143{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-7.70(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.17\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.95\left(\mathrm{dd}, J=8.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.11(\mathrm{dd}, J=5.5,14.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.40-4.48 (m, 1H, CHOH), 4.60-4.69 (m, 2H, CHCH,$\left.~ \mathrm{CHCHOH}\right), ~ 4.92(\mathrm{~d}, J=12.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.04\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.46(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.09-7.11,7.19-7.21$, 7.28-7.31 (m, m, m, 11H, NH, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,38.6,55.8,57.3,67.3$, 68.6, 127.1, 128.0, 128.2, 128.5, 128.7, 129.3, 135.9, 156.4, 172.0, 172.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 401.1707$, found: 401.1708 ; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3294(\mathrm{OH}), 1701\left(\mathrm{CO}_{2}\right)$, 1658 (CON).

3.10. Cbz-L-Phe-L-Met-OH 6ah

Colorless powder; mp: $103-104{ }^{\circ} \mathrm{C} ;[\alpha]^{26}{ }_{\mathrm{D}}=-16.1(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.92-2.04 (m, 1H, CH $A_{A} \mathrm{CH}_{2} \mathrm{~S}$), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.10-2.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{~S}\right), 2.37-2.48(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~S}$), 3.03-3.15 (m, 2H, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.43-4.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$), 4.61-4.66 (m, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.39(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.72(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.17-7.38\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.3,29.8,30.8,38.2,51.7,56.1,67.3,127.2,128.1,128.3,128.6,128.8$, 129.3, 136.0, 156.2, 171.5, 174.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 453.1455, found: 453.1440 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3301(\mathrm{OH}), 1712\left(\mathrm{CO}_{2}\right), 1689(\mathrm{CON}), 1652(\mathrm{CON})$.

3.11. Cbz-L-Phe-L-Trp-OH 6ai

Colorless powder; mp: $141-144{ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=-3.30(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.74\left(\mathrm{dd}, J=9.7,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.07\left(\mathrm{dd}, J=5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.22(\mathrm{dd}, J=$ $7.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$-indole), $3.34\left(\mathrm{dd}, J=5.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$-indole), 4.37 (dd, $J=5.0,9.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.71\left(\mathrm{dd}, J=5.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right.$-indole), $4.94\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.00\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.99,7.05-7.09,7.14-7.32,7.55(\mathrm{t}, \mathrm{m}, \mathrm{m}, \mathrm{d}, J=7.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $2 \mathrm{H}, 11 \mathrm{H}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$, indole); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 28.5,39.0,54.7,57.8,67.6,110.7$, $112.3,119.4,119.9,122.4,124.6,127.7,128.7,129.0,129.4,129.5,130.4,138.0,138.2,138.6,158.2$, 173.9, 174.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 508.1843 , found: 508.1836; IR $\left(\mathrm{KBr}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3408(\mathrm{NH}), 3313(\mathrm{OH}), 1712\left(\mathrm{CO}_{2}\right), 1627(\mathrm{CON})$.

3.12. Cbz-Gly-L-Phe-OH 6ba

Colorless sticky oil; $[\alpha]^{28}{ }_{\mathrm{D}}=+25.1(c 0.98, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right): \delta 3.00(\mathrm{dd}, J=$ $7.6,14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.18\left(\mathrm{dd}, J=5.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.72(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{A} \mathrm{CONH}$), 3.79 (d, $\left.J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CONH}\right), 4.67\left(\mathrm{dd}, J=5.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.09$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.16-7.27, 7.28-7.38 (m, m, $5 \mathrm{H}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD-d ${ }^{4}$): $\delta 38.4,44.8,54.9,67.9,127.9,128.9,129.1,129.5,130.4,138.1,159.0,171.9,174.4$; HRMS (ESITOF): Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 379.1264$, found: 379.1250; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3326$ $(\mathrm{OH}), 1732\left(\mathrm{CO}_{2}\right), 1662(\mathrm{CON})$.

3.13. Cbz-L-Ala-L-Phe-OH 6ca

Colorless powder; mp: $125-127{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=+0.96(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 1.27\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.01\left(\mathrm{dd}, J=7.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.18(\mathrm{dd}, J=5.2,13.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.13\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.64\left(\mathrm{dd}, J=5.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.06$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.16-7.26, 7.28-7.38 (m, m, $5 \mathrm{H}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 18.3,38.4,51.9,54.9,67.7,127.8,128.9,129.0,129.5,129.5,130.5,138.2,158.2,174.3,175.3 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 393.1421 , found: 393.1449 ; IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-}$ $\left.{ }^{1}\right)=3330(\mathrm{OH}), 1736\left(\mathrm{CO}_{2}\right), 1714(\mathrm{CON}), 1691(\mathrm{CON})$.

3.14. Cbz-L-Val-L-Phe-OH 6da

Colorless powder; mp: $174-177{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-0.76$ (c $\left.1.00, \mathrm{DMSO}\right) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 0.87\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93-2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.97$ (dd, $\left.J=8.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.18\left(\mathrm{dd}, J=5.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.66\left(\mathrm{dd}, J=5.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.13-7.22$, 7.28-7.35 (m, m, 5H, 5H, C $\mathrm{C}_{6} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 18.6,19.7,32.1,38.5,54.9$, $62.1,67.7,127.8,128.9,129.1,129.5,129.5,130.4,138.3,158.5,174.0,174.4$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 421.1734, found: 421.1757; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right)=3342(\mathrm{OH})$,
$1734\left(\mathrm{CO}_{2}\right), 1635(\mathrm{CON})$.

3.15. Cbz-L-Leu-L-Phe-OH 6ea

Colorless powder; mp: $81-83{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-7.43(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right): \delta$ $0.89\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.58-1.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.00\left(\mathrm{dd}, J=8.4,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.19(\mathrm{dd}, J$ $\left.=5.2,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.14\left(\mathrm{dd}, J=6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}\right), 4.65(\mathrm{dd}, J=5.2,8.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.15-7.24,7.27-7.35\left(\mathrm{~m}, \mathrm{~m}, 5 \mathrm{H}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 22.0,23.4,25.9,38.4,42.1,54.9,54.9,67.7,127.8,128.8,129.0,129.5,129.5$, 130.5, 138.2, 158.4, 174.3, 175.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 435.1890, found: 435.1909; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3319(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1697(\mathrm{CON}), 1664(\mathrm{CON})$.

3.16. Cbz-L-Met-L-Phe-OH 6fa

Colorless powder; mp: $125-126{ }^{\circ} \mathrm{C} ;[\alpha]{ }^{27} \mathrm{D}=-6.98(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 1.77-1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{~S}\right), 1.92-1.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{~S}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~S}$), $3.00\left(\mathrm{dd}, J=8.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.19\left(\mathrm{dd}, J=5.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.22(\mathrm{dd}$, $\left.J=5.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.66\left(\mathrm{dd}, J=5.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.15-7.26, 7.28-7.35 (m, m, 5H, 5H, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 15.2,31.0,32.9$, $38.3,54.9,55.5,67.8,127.9,128.9,129.1,129.5,129.5,130.4,138.2,158.4,174.1,174.3 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 453.1455$, found: 453.1454; IR $\left(\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}\right)=$ $3311(\mathrm{OH}), 1722\left(\mathrm{CO}_{2}\right), 1695(\mathrm{CON}), 1660(\mathrm{CON})$.

3.17. Cbz-L-Trp-L-Phe-OH 6ga

Colorless powder; mp: 70-72 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=-18.1(c \quad 0.99, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, MeOD- $\left.d^{4}\right): \delta$ 2.96 (dd, $J=7.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}$), 3.01 (dd, $J=8.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$-indole), 3.14 (dd, $J=$ $5.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.20\left(\mathrm{dd}, J=5.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$-indole), 4.43 (dd, $J=5.4,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCH}_{2}$-indole), $4.64\left(\mathrm{dd}, J=5.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.96-7.33$, 7.57 (m, d, $J=7.9 \mathrm{~Hz}, 14 \mathrm{H}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$, indole); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 29.1,38.4,55.0$, $57.2,67.7,111.0,112.3,119.4,119.9,122.4,124.7,127.8,128.7,128.8,128.9,129.4,129.5,130.5$, 138.1, 158.2, 174.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 508.1843, found: 508.1820 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3402(\mathrm{NH}), 3313(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1662(\mathrm{CON})$.

Section 2. Ecological base-conditioned preparation of dipeptides using unprotected α-amino acids containing hydrophilic side chains

4. Typical procedure for the amidation of 3-phenylpropanoic acid 1 a using ethyl chloroformate

To a colorless solution of $75 \mathrm{mg}(0.50 \mathrm{mmol})$ of 3-phenylpropanoic acid $\mathbf{1 a}$ in 10 mL of THF were added at $0^{\circ} \mathrm{C} 67 \mu \mathrm{~L}(0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}(1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}$, a solution of $110 \mathrm{mg}(0.75 \mathrm{mmol}, 1.5$ equiv) of L-Glu-OH 2e and 63 mg ($0.75 \mathrm{mmol}, 1.5$ equiv) of NaHCO_{3} in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ was added at $0{ }^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and the resulted colorless clear solution was concentrated in vacuo. The residue was adjusted to pH 2 by addition of a 1.0 M aqueous solution of HCl . The resulted suspension was diluted with 30 mL of EtOAc. The aqueous layer was extracted with 20 mL of EtOAc. The combined organic layer was washed with 10 mL of brine, and dried over anhydrous MgSO_{4}. The crude product was chromatographed on silica gel with EtOAc containing $1 \% \mathrm{AcOH}$ to afford 126 mg (90% yield) of N-(3-phenylpropanoyl)-L-Glu-OH $3 \mathbf{e}$.

4.1. N-(3-phenylpropanoyl)-L-Ser-OH 3ak

Colorless powder; mp: $119-123{ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=+6.70(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.72\left(\mathrm{ddd}, J=1.5,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}\right), 2.72\left(\mathrm{ddd}, J=1.5,8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.92(\mathrm{dd}$, $J=7.6,8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.77\left(\mathrm{dd}, J=4.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}\right), 3.86(\mathrm{dd}, J=4.8,11.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 4.48\left(\mathrm{dd}, J=4.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 7.14-7.18,7.21-7.28\left(\mathrm{~m}, \mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 32.8,38.8,56.1,63.0,127.2,129.4,129.5,142.3,173.5,175.4 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 260.0893$, found: 260.0894 ; IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-}$ $\left.{ }^{1}\right): 3305(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1648(\mathrm{CON})$.

4.2. \mathbf{N}-(3-phenylpropanoyl)-L-Cys-OH 3al

Colorless powder; mp: $132-133{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}=-4.10(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.58\left(\mathrm{ddd}, J=1.2,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}\right), 2.58\left(\mathrm{ddd}, J=1.2,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.79(\mathrm{dd}$, $\left.J=6.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{SH}\right), 2.86\left(\mathrm{dd}, J=4.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{SH}\right), 2.93(\mathrm{dd}, J=7.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.58\left(\mathrm{dd}, \mathrm{J}=4.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{SH}\right), 7.14-7.19,7.21-7.28\left(\mathrm{~m}, \mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 26.8,32.8,38.6,55.9,127.3,129.5,129.5,142.1,173.1,175.3 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 254.0854$, found: 254.0856; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 3353 (OH), $2563(\mathrm{SH}), 1720\left(\mathrm{CO}_{2}\right), 1589(\mathrm{CON})$.

4.3. \boldsymbol{N}-(3-phenylpropanoyl)-L-Tyr-OH 3am

Colorless powder; mp: $164-167{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}=+16.8(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.46\left(\mathrm{ddd}, J=1.6,8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}\right), 2.46\left(\mathrm{ddd}, J=1.6,8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.81$ (dd, $\left.J=8.1,8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.82\left(\mathrm{dd}, J=8.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.05(\mathrm{dd}, J=5.1,13.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.58\left(\mathrm{dd}, J=5.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.67,6.95,(\mathrm{~d}, \mathrm{~d}, J=8.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.13-7.16, 7.21-7.25 (m, m, 3H, 2H, C ${ }_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 32.8,37.7,38.6$, $55.3,116.2,127.2,129.1,129.4,129.5,131.3,142.2,157.3,174.9,175.1$; HRMS (ESI-TOF): Calcd
for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 336.1206$, found: 336.1187 ; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3309 (ArOH), 3197 $(\mathrm{OH}), 1745\left(\mathrm{CO}_{2}\right), 15923(\mathrm{CON})$.

4.4. \boldsymbol{N}-(3-phenylpropanoyl)-L-Glu-OH 3ae (see Section 1 of Chapter 1 in Experimental) ${ }^{16 \mathrm{a}}$

Colorless powder; ${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- d^{4}): $\delta 1.80-1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\right), 2.07-2.15(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{B} \mathrm{CH}$), 2.22-2.26 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.54 (ddd, $J=1.4,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}$), 2.54 (ddd, J $\left.=1.4,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.91\left(\mathrm{dd}, J=7.4,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.40(\mathrm{dd}, J=4.8,9.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCO}$), 7.15-7.18, 7.20-7.27 (m, m, 1H, 4H, C6 H_{5}).

4.5. \boldsymbol{N}-(3-phenylpropanoyl)-L-Gln-OH 3af (see Section 1 of Chapter 1 in Experimental) ${ }^{16 a}$

 Colorless powder; ${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- d^{4}): $\delta 1.83-1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} A \mathrm{CH}), 2.07-2.24(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{B} \mathrm{CH}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.55 (ddd, $J=1.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}$), $2.55(\mathrm{ddd}, J=1.5,8.1,8.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.92\left(\mathrm{dd}, J=7.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.37(\mathrm{dd}, J=4.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 7.14-$ 7.18, 7.21-7.28 (m, m, 1H, 4H, C ${ }_{6} \mathrm{H}_{5}$).
5. Typical procedure for the amidation of Cbz-L-Phe-OH 5a using ethyl chloroformate

To a colorless solution of $150 \mathrm{mg}(0.50 \mathrm{mmol})$ of Cbz-L-Phe-OH 5a in 10 mL of THF were added at $0{ }^{\circ} \mathrm{C} 67 \mu \mathrm{~L}$ ($0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}(1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}$, a solution of $110 \mathrm{mg}(0.75 \mathrm{mmol}, 1.5$ equiv) of L-GluOH 2e and 63 mg ($0.75 \mathrm{mmol}, 1.5$ equiv) of NaHCO_{3} in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ was added at $0{ }^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and the resulted colorless clear solution was concentrated in vacuo. The residue was adjusted to pH 2 by addition of a 1.0 M aqueous solution of HCl . The colorless suspension was diluted with 10 mL of brine, extracted with $25 \mathrm{~mL} \times 3$ of a $4: 1$ mixture of EtOAc and MeOH , and dried over anhydrous MgSO_{4}. The crude product was chromatographed on silica gel with a 9:1 mixture of chloroform and MeOH containing $1 \% \mathrm{AcOH}$ to afford 187 mg (87% yield) of Cbz-L-Phe-L-Glu-OH 6ae.

5.1. Cbz-L-Phe-L-Ser-OH 6ak

Colorless powder; mp: $156-159{ }^{\circ} \mathrm{C} ;[\alpha]^{30} \mathrm{D}=+4.82(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 2.85\left(\mathrm{dd}, J=9.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.19\left(\mathrm{dd}, J=4.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.83(\mathrm{dd}, J=$ $\left.3.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}\right), 3.92\left(\mathrm{dd}, J=4.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 4.46(\mathrm{dd}, J=4.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.48\left(\mathrm{dd}, J=3.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 4.98\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03$ $\left(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.19-7.33\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): δ $39.2,56.2,57.8,63.0,67.6,127.8,128.7,129.0,129.5,129.5,130.4,138.2,138.6,158.4,173.1,174.2$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 387.1551$, found: 387.1539; IR ($\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}$): $3298(\mathrm{OH}), 1732\left(\mathrm{CO}_{2}\right), 1647(\mathrm{CON})$.

5.2. Cbz-L-Phe-L-Cys-OH 6al

Colorless powder; mp: 121-122 ${ }^{\circ} \mathrm{C} ;[\alpha]^{29} \mathrm{D}=-9.32(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.87\left(\mathrm{dd}, J=9.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.88\left(\mathrm{dd}, J=4.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H_{A} \mathrm{SH}\right), 2.97(\mathrm{dd}, J=4.6$, $\left.14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{SH}\right), 3.16\left(\mathrm{dd}, J=5.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.44(\mathrm{dd}, J=5.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.60\left(\mathrm{dd}, J=4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{SH}\right), 5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.17-7.33(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 26.8,39.0,56.0,57.8,67.6,127.8,128.7,129.0,129.5$, 130.4, 138.2, 138.6, 158.3, 172.8, 174.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 403.1322, found: 403.1296; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3309(\mathrm{OH}), 2568(\mathrm{SH}), 1716\left(\mathrm{CO}_{2}\right), 1656(\mathrm{CON})$.

5.3. Cbz-L-Phe-L-Tyr-OH 6am

Colorless powder; mp: 189-190 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-4.90(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 2.77\left(\mathrm{dd}, J=9.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.91\left(\mathrm{dd}, J=8.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.09(\mathrm{dd}, J=$ $\left.5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.09\left(\mathrm{dd}, J=5.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.36(\mathrm{dd}, J=5.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.58\left(\mathrm{dd}, J=5.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.97\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.03\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.68,7.02\left(\mathrm{~d}, \mathrm{~d}, J=8.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.16-7.32(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 37.7,39.0,55.3,57.8,67.6,116.3,127.7,128.7$, 128.8, 129.0, 129.4, 129.5, 130.4, 131.5, 138.2, 138.6, 157.4, 173.9, 174.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 463.1864$, found: 463.1862 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 3433(\mathrm{OH}), 3334(\mathrm{ArOH})$, $1734\left(\mathrm{CO}_{2}\right), 1684(\mathrm{CON}), 1653(\mathrm{CON})$.

5.4. Cbz-L-Phe-L-Glu-OH 6ae (see Section 1 of Chapter 1 in Experimental) ${ }^{16 \mathrm{a}}$

Colorless powder; ${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- d^{4}): $\delta 1.89-1.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}\right.$), 2.15-2.23 (m, $1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CO}$), 2.39 (dd, $J=7.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.84\left(\mathrm{dd}, J=9.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $3.15\left(\mathrm{dd}, J=5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.40-4.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \times 2), 4.99(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.18-7.33\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right)$.

5.5. Cbz-L-Phe-L-GIn-OH 6af (see Section 1 of Chapter 1 in Experimental) ${ }^{16 a}$

Colorless powder; ${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- d^{4}): $\delta 1.91-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}\right.$), 2.16-2.35 (m, $3 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{CO}$), $2.85\left(\mathrm{dd}, J=9.7,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), $3.16(\mathrm{dd}, J=4.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.38-4.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \times 2), 4.99\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.03(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.17-7.33\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right)$.

5.6. Cbz-d-Phe-L-Glu-OH 6a'e

Colorless powder; mp: $169-172{ }^{\circ} \mathrm{C} ;[\alpha]{ }^{28} \mathrm{D}=+0.82(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 1.79-1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}\right), 2.04-2.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.88(\mathrm{dd}, J=8.8,13.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.09\left(\mathrm{dd}, J=6.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.38\left(\mathrm{dd}, J=6.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 4.40-4.44 (m, 1H, CHCH CH_{2}), $5.00\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.05(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$,
$\mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.19-7.33 (m, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 27.8,31.0,39.5,53.1$, $58.0,67.7,127.9,128.8,129.0,129.5,129.6,130.4,138.2,138.4,158.2,174.0,174.6,176.3$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 451.1476$, found: 451.1488 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 3299$ $(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1670(\mathrm{CON})$.

5.7. Cbz-L-Phe-L-Asp-OH 6an

Colorless powder; mp: 178-179 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-11.7(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.84\left(\mathrm{dd}, J=9.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.84\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.18(\mathrm{dd}, J=4.8,13.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.42\left(\mathrm{dd}, J=4.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.73(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH} 2 \mathrm{CO})$, $4.97\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.02\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.18-7.33\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\times 2$) ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right): \delta 36.8,39.1,50.2,57.8,67.6,127.7,128.7,128.9,129.5,130.4$, 138.2, 138.6, 158.3, 173.7, 173.9, 174.0; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}: 415.1500$, found: 415.1486; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3305(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1695(\mathrm{CON}), 1653(\mathrm{CON})$.

5.8. Cbz-L-Phe-L-Tyr(3-OH)-OH 6ao

Colorless powder; mp: $132-134{ }^{\circ} \mathrm{C}$; $[\alpha]^{28} \mathrm{D}=-7.26(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.77\left(\mathrm{dd}, J=9.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{3}\right), 2.87\left(\mathrm{dd}, J=7.7,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.03(\mathrm{dd}, J=$ $5.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.09\left(\mathrm{dd}, J=4.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{3}\right.$), $4.37(\mathrm{dd}, J=4.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right), 4.58\left(\mathrm{dd}, J=5.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.96\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.03\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.53,6.65-6.67\left(\mathrm{~d}, \mathrm{~m}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 7.16-7.32(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 37.9,39.0,55.2,57.8,67.7,116.4,117.5,121.9$, 127.7, 128.7, 128.9, 129.4, 129.5, 130.4, 138.2, 138.6, 145.3, 146.2, 158.3, 173.9, 174.5; HRMS (ESITOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}: 479.1813$, found: 479.1796; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 3487 (ArOH), 3325 (ArOH), 3033 (OH), $1724\left(\mathrm{CO}_{2}\right), 1695(\mathrm{CON}), 1657(\mathrm{CON})$.

5.9. Cbz-L-Phe-L-Tyr(3-I)-OH 6ap

Colorless powder; mp: 182-185 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-1.08(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.79\left(\mathrm{dd}, J=9.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{3}\right), 2.88\left(\mathrm{dd}, J=7.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.08(\mathrm{dd}, J=$ $\left.5.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.08\left(\mathrm{dd}, J=5.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{3}\right), 4.36(\mathrm{dd}, J=5.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$), $4.58\left(\mathrm{dd}, J=5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.97\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.03\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.74,7.03,7.54\left(\mathrm{~d}, \mathrm{~d}, \mathrm{~s}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{3}\right), 7.17-$ $7.32\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 37.0,39.2,55.1,57.9,67.7,84.6,115.7$, 127.7, 128.7, 128.9, 129.5, 129.5, 130.4, 131.0, 131.6, 138.2, 138.6, 141.0, 157.0, 174.0, 174.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{IN}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 589.0830$, found: 589.0835; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3359 $(\mathrm{ArOH}), 3280(\mathrm{OH}), 1735\left(\mathrm{CO}_{2}\right), 1706(\mathrm{CON}) 1644(\mathrm{CON}), 1051(\mathrm{ArI})$.

5.10. Cbz-L-Phe-L-Trp(5-OH)-OH 6aq

Colorless powder; mp: 107-110 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-14.2(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 2.72$ (dd, $J=10.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$-indole), 3.08 (dd, $J=4.7,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$-indole), 3.14 (dd, $\left.J=7.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.28\left(\mathrm{dd}, J=5.3,14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.37(\mathrm{dd}, J=4.7,10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCH}_{2}$-indole), 4.69 (dd, $\left.J=5.3,7,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.94\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.01\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.66,6.95,7.03,7.13-7.29(\mathrm{~d}, \mathrm{~s}, \mathrm{~s}, \mathrm{~m}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, 11 H , indole, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 28.6,39.0,54.7,57.8,67.6,103.7,110.0$, $112.5,112.8,125.4,127.7,128.7,128.9,129.4,129.5,129.7,130.3,133.0,138.2,138.6,151.3,158.3$, 174.0, 174.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 502.1973, found: 502.1957; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3566(\mathrm{NH}), 3396(\mathrm{ArOH}), 3324(\mathrm{OH}), 1704\left(\mathrm{CO}_{2}\right), 1654(\mathrm{CON})$.

5.11. Cbz-L-Ala-L-Ser-OH 6ek

Colorless powder; mp: $300{ }^{\circ} \mathrm{C}<;[\alpha]^{28}{ }_{\mathrm{D}}=+33.9$ (c 1.00, DMSO); ${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- $\left.d^{6}\right): \delta$ $1.22\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.40\left(\mathrm{dd}, J=6.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}\right), 3.60(\mathrm{dd}, J=5.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{B} \mathrm{OH}$), 3.79 (ddd, $J=5.3,6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), $4.04\left(\mathrm{dd}, J=7.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $5.01\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.06\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.34(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 7.31-$ $7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.49\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCHCH}_{2}\right), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCHCH} 3) ;{ }^{13} \mathrm{C}$ NMR (100MHz, DMSO- d^{6}): $\delta 18.3,50.4,55.2,62.5,65.4,127.7,127.8,128.4,137.0,155.7,171.7$, 173.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 333.1057, found: 333.1073; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3354(\mathrm{OH}), 3320(\mathrm{OH}), 1693\left(\mathrm{CO}_{2}\right), 1666(\mathrm{CON})$.

5.12. Cbz-L-Ala-L-Cys-OH 6el

Colorless powder; mp: 164-166 ${ }^{\circ} \mathrm{C} ;[\alpha]{ }^{27} \mathrm{D}=-11.9(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 1.36\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.90(\mathrm{dd}, J=5.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} A \mathrm{SH}), 2.98(\mathrm{dd}, J=4.6,14.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{SH}\right), 4.21\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.61\left(\mathrm{dd}, J=4.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{SH}\right), 5.09(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.26-7.37 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 18.2,26.8,52.0,55.9$, 67.7, 128.9, 129.1, 129.5, 138.2, 158.3, 173.0, 175.6; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na})^{+}: 349.0829$, found: 349.0847 ; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): $3346(\mathrm{OH}), 2565(\mathrm{SH}), 1733\left(\mathrm{CO}_{2}\right), 1637$ (CON).

5.13. Cbz-L-Ala-L-Tyr-OH 6em

Colorless powder; mp: 148-152 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{28} \mathrm{D}=+10.6(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 1.28\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.93\left(\mathrm{dd}, J=7.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.07(\mathrm{dd}, J=5.4,14.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.14\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.57\left(\mathrm{dd}, J=5.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.05$ $\left(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.09\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.68,7.02(\mathrm{~d}, \mathrm{~d}, J=8.3,8.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.28-7.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- $\left.d^{4}\right): \delta 18.2,37.6,51.9,55.2$, $67.8,116.2,128.8,128.9,129.1,129.5,131.5,138.2,157.4,158.2,174.6,175.3$; HRMS (ESI-TOF):

Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 409.1370$, found: 409.1386; IR ($\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3401 (ArOH), $3300(\mathrm{OH}), 1733\left(\mathrm{CO}_{2}\right), 1687(\mathrm{CON}), 1653(\mathrm{CON})$.

5.14. Cbz-L-Val-L-Ser-OH 6fk

Colorless powder; mp: 172-175 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-4.24(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 0.94\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05-2.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.82$ (dd, $\left.J=4.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}\right), 3.91\left(\mathrm{dd}, J=4.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 4.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.49\left(\mathrm{dd}, J=4.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$) ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- $\left.d^{4}\right): \delta 18.4,19.8,32.2,56.1,62.0,63.1,67.8,128.9,129.1,129.5$, 138.3, 158.7, 173.2, 174.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 361.1370, found: 361.1388; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): $3546(\mathrm{OH}), 3307(\mathrm{OH}), 1733\left(\mathrm{CO}_{2}\right), 1645(\mathrm{CON})$.

5.15. Cbz-L-Val-L-Cys-OH 6fl

Colorless powder; mp: $152-154{ }^{\circ} \mathrm{C} ;[\alpha]{ }^{28} \mathrm{D}=-11.2(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d^{4}): $\delta 0.96\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03-2.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.88$ (dd, $\left.J=6.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H_{A} \mathrm{SH}\right), 2.96\left(\mathrm{dd}, J=4.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H_{B} \mathrm{SH}\right), 3.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.62\left(\mathrm{dd}, J=4.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{SH}\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- $\left.d^{4}\right): \delta 18.6,19.8,26.7,31.9,55.9,62.2,67.8,128.9,129.0,129.5$, 138.3, 158.7, 172.8, 174.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 377.1142 , found: 372.1144; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3356(\mathrm{OH}), 2575(\mathrm{SH}), 1736\left(\mathrm{CO}_{2}\right), 1643(\mathrm{CON})$.

5.16. Cbz-L-Val-L-Tyr-OH 6fm

Colorless powder; mp: $156-157{ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-4.70(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 0.88\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.96-2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.89$ (dd, $\left.J=8.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.08\left(\mathrm{dd}, J=5.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.60\left(\mathrm{dd}, J=5.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.06\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.11\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.67,7.03\left(\mathrm{~d}, \mathrm{~d}, J=8.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.26-7.37(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 18.6,19.7,32.0,37.8,55.3,62.1,67.8,116.2,128.9$, 129.0, 129.1, 129.6, 131.4, 138.3, 157.4, 158.6, 174.0, 174.6; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 437.1683$, found: 437.1685 ; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3301 (ArOH), $3307(\mathrm{OH})$, $1716\left(\mathrm{CO}_{2}\right), 1695(\mathrm{CON}), 1654(\mathrm{CON})$.

5.17. Cbz-L-Met-L-Ser-OH 6hk

Colorless powder; mp: $158-161^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=+8.16\left(c 1.00\right.$, DMSO); ${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: $\delta 1.87-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{~S}\right), 2.04-2.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{~S}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.51-2.63(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~S}$), 3.83 (dd, $J=3.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}$), 3.93 (dd, $J=4.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}$), 4.32 (dd, J $\left.=5.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.48\left(\mathrm{dd}, J=3.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$,
7.26-7.38 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 15.2,31.1,33.0,55.5,56.2,62.9,67.8$, 128.9, 129.1, 129.5, 138.2, 158.5, 173.2, 174.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 371.1271, found: 371.1262; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3289(\mathrm{OH}), 1743\left(\mathrm{CO}_{2}\right), 1722(\mathrm{CON}), 1680(\mathrm{CON})$.

5.18. Cbz-L-Met-L-Cys-OH 6hl

Colorless powder; mp: 142-144 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-7.03(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- $\left.d^{4}\right)$: δ 1.88-1.97 (m, 1H, CH $H_{A} \mathrm{CH}_{2} \mathrm{~S}$), 2.03-2.12 (m, $1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{~S}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50-2.63(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), $2.90\left(\mathrm{dd}, J=6.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{SH}\right), 2.98\left(\mathrm{dd}, J=4.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{SH}\right), 4.30(\mathrm{dd}$, $\left.J=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.62\left(\mathrm{dd}, J=4.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{SH}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.27-7.37 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 15.3,26.7,31.1,32.8,55.5,55.9,62.9$, 67.8, 128.9, 129.1, 129.5, 138.2, 158.5, 172.8, 174.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 387.1043$, found: 387.1062 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 3313(\mathrm{OH}), 2584(\mathrm{SH}), 1736\left(\mathrm{CO}_{2}\right), 1635$ (CON).

5.19. Cbz-L-Met-L-Tyr-OH 6hm

Colorless powder; mp: $133-135{ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=+0.26(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}\right)$: $\delta 1.78-1.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{~S}\right), 1.93-2.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{~S}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41-2.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~S}$), $2.92\left(\mathrm{dd}, J=8.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.09\left(\mathrm{dd}, J=5.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.23(\mathrm{dd}$, $\left.J=5.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.59\left(\mathrm{dd}, J=5.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.06(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.10\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.68,7.03(\mathrm{~d}, \mathrm{~d}, J=8.4,8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.28-7.35 (m, 5H, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$; ${ }^{13} \mathrm{C}$ NMR (100MHz, MeOD- d^{4}): $\delta 15.2,31.0,32.8,37.5,55.2,55.5$, $67.8,116.3,128.8,128.9,129.1,129.5,131.4,138.2,157.4,158.4,174.1,174.5$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 447.1584$, found: 447.1569 ; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): $3302(\mathrm{OH}), 1716$ $\left(\mathrm{CO}_{2}\right), 1691(\mathrm{CON}), 1649(\mathrm{CON})$.

5.20. \boldsymbol{N}-Boc- \boldsymbol{O}-Bn-L-Ser-L-Glu-OH 6je

Colorless sticky oil; $[\alpha]^{19}{ }_{\mathrm{D}}=-1.46(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400MHz, MeOD-d $\left.{ }^{4}\right): \delta 1.45(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3} \times 3\right)$, 1.89-1.98 (m, 1H, $\left.\mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}\right), 2.15-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CO}\right), 2.36-2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.67\left(\mathrm{dd}, J=4.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), $3.74\left(\mathrm{dd}, J=5.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 4.30 (dd, $\left.J=4.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 4.47-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.55\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.26-7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, MeOD- d^{4}): $\delta 28.2,28.7,31.0,53.0,56.2,71.1,74.3,81.0,128.8,129.0,129.5,139.3,157.8,172.9$, 174.4, 176.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 447.1743, found: 447.1756; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 3329(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1652(\mathrm{CON})$.

5.21. N^{α}-Boc- N^{ε}-Cbz-L-Lys-L-Glu-OH 6ke

Colorless sticky oil; $[\alpha]^{18}{ }_{\mathrm{D}}=-11.4$ (c 1.00, MeOH); ${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD- d^{4}): $\delta 1.39-1.55$ (m,
$\left.13 \mathrm{H}, \mathrm{CH}_{3} \times 3, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.56-1.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right), 1.70-1.81(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{B}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right), 1.91-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CO}\right), 2.14-2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right), 2.38-2.42(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.09-3.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.99-4.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}\right), 4.42-4.44(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 5.06 (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $7.28-7.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , MeOD- d^{4}): $\delta 24.1,28.0,28.8,30.5,31.1,32.9,41.5,52.9,56.0,67.4,81.0,128.8,129.0,129.5,138.5,157.9$, 159.0, 174.6, 175.4, 176.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 532.2276$, found: $532.2278 ;$ IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): $3329(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1685(\mathrm{CON}), 1655(\mathrm{CON})$.

6. Typical procedure for the amidation of Cbz-L-Phe-OH 5a in a glam scale

To a colorless solution of $1.50 \mathrm{~g}(5.0 \mathrm{mmol})$ of Cbz-L-Phe-OH 5 a in 100 mL of THF were added at $0^{\circ} \mathrm{C} 0.67 \mathrm{~mL}$ ($7.0 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $2.09 \mathrm{~mL}(15 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}$, a solution of $1.10 \mathrm{~g}(7.5 \mathrm{mmol}, 1.5$ equiv) of L-GluOH 2 e and $0.63 \mathrm{~g}\left(7.5 \mathrm{mmol}, 1.5\right.$ equiv) of NaHCO_{3} in 100 mL of $\mathrm{H}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and the resulted colorless clear solution was concentrated in vacuo. The residue was adjusted to pH 2 by addition of a 1.0 M aqueous solution of HCl . The colorless suspension was diluted with 100 mL of brine, extracted with 200 mL of a 9:1 mixture of EtOAc and MeOH. The aqueous layer was extracted with $100 \mathrm{~mL} \times 2$ of a 9:1 mixture of EtOAc and MeOH . The combined organic layer was dried over anhydrous MgSO_{4}. The crude product was recrystallized from 50 mL of a 1:4 mixture of toluene and hexane to afford a colorless solid, followed by recrystallization from 20 mL of a 4:1 mixture of EtOAc and hexane to afford 1.74 g (81\% yield) of Cbz-L-Phe-L-Glu-OH 6ae.

Section 3. Amidation of carboxylic acids via mixed carbonic carboxylic anhydrides and its application to synthesis of antidepressant $(1 S, 2 R)$-tranylcypromine

7. Typical procedure for the primary amidation of 3-phenylpropanoic acid 1a with $\mathrm{NH}_{4} \mathrm{Cl}$

To a colorless solution of $75 \mathrm{mg}(0.50 \mathrm{mmol})$ of 3-phenylpropanoic acid 1a in 10 mL of THF were added at $0^{\circ} \mathrm{C} 67 \mu \mathrm{~L}(0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}(1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}, 0.75 \mathrm{ml}$ of a 1.0 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(0.75$ mmol, 1.5 equiv) was added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 5 mL of $\mathrm{H}_{2} \mathrm{O}$ was added to the resulted mixture. The colorless clear solution was extracted with 30 mL of EtOAc and the aqueous layer was extracted with 20 mL of EtOAc. The organic layers were combined, washed with 5 mL of brine, and dried over anhydrous MgSO_{4}. The crude product was chromatographed on silica gel with EtOAc to afford 72 mg (96% yield) of 3-phenylpropanamide $9 \mathbf{9}$.

7.1. 3-Phenylpropanamide 9a

Colorless solid; mp: 92-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.54\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.98$ ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $5.29\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.20-7.23,7.26-7.32\left(\mathrm{~m}, \mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.4,37.5,126.3,128.3,128.6,140.8,174.6$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NONa}(\mathrm{M}+\mathrm{Na})^{+}: 172.0733$, found: 172.0711; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$) $=3394$ (CONH), 3186 (CONH), 1646 (CON), 1628 (CON).

7.2. Cinnamamide 9b

Colorless powder; mp: $140-142{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.52\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.46(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 7.37-7.40,7.51-7.54\left(\mathrm{~m}, \mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.66\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}_{6} \mathrm{H}_{5}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 119.7,128.1,129.0,130.1,134.6,142.6,167.8$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NONa}(\mathrm{M}+\mathrm{Na})^{+}: 170.0576$, found: 170.0556 ; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right)=3373(\mathrm{CONH})$, 3168 (CONH), 1662 (CON).

7.3. 4-Methoxycinnamamide 9c

Colorless powder; mp: 198-201 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d^{4}): $\delta 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.49(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 7.50\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}_{6} \mathrm{H}_{5}\right), 6.94,7.51(\mathrm{~d}, \mathrm{~d}, J=8.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 55.9,115.4,118.8,128.8,130.6,142.6,162.7,171.5$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 200.0682$, found: 200.0673; IR (KBr, $v_{\max } / \mathrm{cm}^{-}$ $\left.{ }^{1}\right)=3361(\mathrm{CONH}), 3166(\mathrm{CONH}), 1684(\mathrm{CON}), 1662(\mathrm{CON})$.

7.4. Pivalamide 9d

Colorless solid; mp: 105-108 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \times 3\right.$), $5.21(\mathrm{br}, 1 \mathrm{H}$, NH_{A}), $5.59\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.7,38.7,181.6$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NONa}(\mathrm{M}+\mathrm{Na})^{+}$: 124.0733, found: 124.0723; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3398(\mathrm{CONH})$, $3205(\mathrm{CONH}), 2960\left(\mathrm{CH}_{3}\right), 1653(\mathrm{CON}), 1624(\mathrm{CON})$.

7.5. Benzamide 9e

Colorless powder; mp: 109-110 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.67\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{A}}\right), 6.08(\mathrm{br}, 1 \mathrm{H}$, NH_{B}), 7.44-7.49, 7.52-7.57, 7.81-7.84 (m, m, m, 2H, $1 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 127.4, 128.6, 132.0, 133.4, 169.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NONa}(\mathrm{M}+\mathrm{Na})^{+}: 144.0420$, found: 144.0411; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3367(\mathrm{CONH}), 3170(\mathrm{CONH}), 1658(\mathrm{CON}), 1623(\mathrm{CON})$.

7.6. 4-Nitrobenzamide 9f

Colorless powder; mp: 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d^{4}): $\delta 8.07,8.32(\mathrm{~d}, \mathrm{~d}, J=9.0,9.0$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD- d^{4}): $\delta 124.6,130.0,140.9,151.2,170.2$; HRMS (ESI-

TOF): Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 189.0271, found: 189.0280; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3467$ $(\mathrm{CONH}), 1664(\mathrm{CON}), 1602(\mathrm{CON}), 1525\left(\mathrm{NO}_{2}\right), 1342\left(\mathrm{NO}_{2}\right)$.

7.7. 2-Acetoxybenzamide 9 g

Colorless powder; mp: 130-132 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.75(\mathrm{br}, 1 \mathrm{H}$, $\left.\mathrm{NH}_{\mathrm{A}}\right), 6.27\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{B}}\right), 7.13,7.31-7.35,7.49-7.53,7.85(\mathrm{~d}, \mathrm{~m}, \mathrm{~m}, \mathrm{~d}, J=9.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.2,123.3,126.3,127.2,130.1,132.4,148.2,167.5$, 169.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 202.0475, found: 202.0496; IR (KBr, $\left.v_{\max } / \mathrm{cm}^{-1}\right)=3392(\mathrm{CONH}), 3167(\mathrm{CONH}), 1741\left(\mathrm{CO}_{2}\right), 1678(\mathrm{CON}), 1628(\mathrm{CON})$.

7.8. 4-Methoxybenzamide 9h

Coloress solid; mp: 139-142 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d^{4}): $\delta 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 6.97, 7.84 (d, d, $\left.J=9.0,9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 56.0,114.7,127.0,130.7,164.2$, 172.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 202.0475, found: 202.0496; IR (KBr, $\nu_{\max } / \mathrm{cm}^{-1}$): $3392(\mathrm{CONH}), 3168(\mathrm{CONH}), 1646(\mathrm{CON}), 1618(\mathrm{CON})$.

7.9. Picolinamide 9i

Colorless solid; mp: $95-97{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.55$ (br, $1 \mathrm{H}, \mathrm{NH}_{\mathrm{A}}$), 7.44-7.48, 7.857.89, 8.20-8.23, 8.57-8.59 (m, m, m, m, 1H, 2H, 1H, 1H, pyridyl, NH_{B}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 122.4,126.5,137.3,148.3,149.6,167.0 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+}$: 145.0372, found: 145.0370 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3417(\mathrm{CONH}), 3182(\mathrm{CONH}), 1662(\mathrm{CON})$.

7.10. Nicotinamide $9 \mathbf{j}$

Colorless solid; mp: 122-124 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$): $\delta 7.50,8.20,8.70,9.02(\mathrm{dd}, \mathrm{d}, \mathrm{d}, \mathrm{s}$, $J=4.8,8.2,8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, pyridyl), $7.61\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{A}}\right), 8.16\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$): $\delta 123.3,129.6,135.1,148.6,151.8,166.4$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+}$: 145.0372 , found: 145.0370 ; IR ($\mathrm{KBr}, \nu_{\text {max }} / \mathrm{cm}^{-1}$) $=3367(\mathrm{CONH}), 3159$ (CONH), 1699 (CON), 1682 (CON).

7.11. Isonicotinamide 9k

Colorless solid; mp: 151-153 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$): $\delta 7.73\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{A}}\right), 7.76,8.72(\mathrm{~d}$, d, $J=6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$, pyridyl), $8.25\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d^{6}\right): \delta 121.3$, 141.2, 150.1, 166.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 123.0553 , found: 123.0529; IR $\left(\mathrm{KBr}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3334(\mathrm{CONH}), 1684(\mathrm{CON}), 1624(\mathrm{CON})$.

7.12. Furan-2-carboxamide 91

Colorless powder; mp: $143-144{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{A}}\right), 6.26(\mathrm{br}, 1 \mathrm{H}$,
NH_{B}), $6.53,7.17,7.47$ (dd, d, d, $J=1.8,3.5,3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, furanyl); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 112.3,115.1,144.4,147.5,160.4$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 134.0212, found: 134.0209 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3352(\mathrm{CONH}), 3163(\mathrm{CONH}), 1664(\mathrm{CON}), 1624$ (CON).

7.13. Furan-3-carboxamide 9m

Colorless powder; mp: $162-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 6.79,7.56,8.07$ (dd, dd, dd, J $=0.9,1.9,1.7,1.9,0.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, furanyl); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 110.0,123.4$, 145.3, 147.1, 167.6; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 134.0212, found: 134.0209; $\operatorname{IR}\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3309(\mathrm{CONH}), 1621(\mathrm{CON})$.

7.14. Thiophene-2-carboxamide 9n

Colorless solid; mp: 143-145 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 7.12,7.66,7.70(\mathrm{dd}, \mathrm{d}, \mathrm{d}, J=3.9$, $5.0,5.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H} 1 \mathrm{H}$, thiophenyl); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 128.9,130.6,132.2$, 139.9, 166.7; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 134.0212$, found: 134.0209; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3342(\mathrm{CONH}), 1612(\mathrm{CON})$.

7.15. Thiophene-3-carboxamide 90

Colorless powder; mp: $178-180{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 7.46,7.50,8.08(\mathrm{dd}, \mathrm{dd}, \mathrm{dd}, J$ $=2.9,5.1,1.4,5.1,1.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, thiophenyl); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-d^{4}$): $\delta 127.5$, 127.9, 130.6, 138.1, 167.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOSNa}(\mathrm{M}+\mathrm{Na})^{+}: 149.9984$, found: 150.0010; IR $\left(\mathrm{KBr}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3359(\mathrm{CONH}), 1622(\mathrm{CON})$.

8. Typical procedure for the primary amidation of Cbz-L-Phe-OH 5a with $\mathrm{NH}_{4} \mathrm{Cl}$

To a colorless solution of $150 \mathrm{mg}(0.50 \mathrm{mmol})$ of Cbz-L-Phe-OH 5a in 10 mL of THF were added at $0{ }^{\circ} \mathrm{C} 67 \mu \mathrm{~L}$ ($0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}$ ($1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}, 0.75 \mathrm{ml}$ of a 1.0 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(0.75$ mmol, 1.5 equiv) was added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$ and 5 mL of $\mathrm{H}_{2} \mathrm{O}$ was added to the resulted mixture. The colorless clear solution was extracted with 30 mL of EtOAc and the aqueous layer was extracted with 20 mL of EtOAc. The organic layers were combined, washed with 5 mL of brine, and dried over anhydrous MgSO_{4}. The crude product was chromatographed on silica gel with EtOAc to afford 129 mg (86% yield) of Cbz-L-Phe- $\mathrm{NH}_{2} \mathbf{1 0 a}$.

8.1. Cbz-L-Phe-NH2 10a

Colorless solid; 97% ee; mp: $163-164{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-8.2(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSOd^{6}): $\delta 2.73\left(\mathrm{dd}, J=10.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.99\left(\mathrm{dd}, J=4.1,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 4.17 (ddd, $J=4.1,8.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.08\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{A}}\right), 7.19-7.35$
$\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H \mathrm{CH}), 7.48\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO- d^{6}): $\delta 37.5,56.1,65.1,126.2,127.4,127.7,128.0,128.3,129.2,137.1,138.3,155.9,173.4 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 321.1210$, found: 321.1290; IR (KBr , $v_{\max } / \mathrm{cm}^{-}$ $\left.{ }^{1}\right)=3419(\mathrm{CONH}), 3318(\mathrm{CONH}), 3199(\mathrm{CONH}), 1691(\mathrm{CON}), 1657(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 23.0 \mathrm{~min}$.

8.2. Cbz-d-Phe-NH2 10a'

Colorless solid; $>99 \%$ ee; $[\alpha]^{23}{ }_{\mathrm{D}}=+7.9(c 1.00, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 18.2 \mathrm{~min}$.

8.3. Boc-L-Phe-NH2 10b

Colorless solid; $>99 \%$ ee; $\mathrm{mp}: 142-144{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=+12.9(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d^{6}): $\delta 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \times 3\right), 2.72\left(\mathrm{dd}, J=10.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.95(\mathrm{dd}, J=4.4,13.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.08 (ddd, $\left.J=4.4,8.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}), 7.01$ (br, 1H, CONH ${ }_{\mathrm{A}}$), 7.16-7.21, 7.24-7.28 (m, m, 1H, 4H, C6H5), $7.37\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d^{6}): $\delta 28.1,37.5,55.6,77.9,126.1,128.0,129.2,138.3,155.2,173.6$; HRMS (ESITOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 287.1366, found: 287.1351; IR $\left(\mathrm{KBr}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right)=3390$ (CONH), $3346(\mathrm{CONH}), 3192(\mathrm{CONH}), 1684(\mathrm{CON}), 1660(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 95/5): $T_{\mathrm{r}} 20.7 \mathrm{~min}$.

8.4. Boc-d-Phe-NH2 10b'

Colorless solid; $>99 \%$ ee; $[\alpha]^{25}{ }_{\mathrm{D}}=-14.2(c 0.99, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 95/5): $T_{\mathrm{r}} 18.3 \mathrm{~min}$.

8.5. Fmoc-L-Phe-NH2 10c

Colorless solid; $>99 \%$ ee; $\mathrm{mp}: 221-224{ }^{\circ} \mathrm{C} ;[\alpha]^{26} \mathrm{D}=-8.4$ (c 1.01, DMSO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d^{6}): $\delta 2.78\left(\mathrm{dd}, J=10.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.00\left(\mathrm{dd}, J=4.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 4.11-4.20 (m, 4H, CHCH $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHCH}_{2} \mathrm{O}$), $7.08\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{A}}\right), 7.45\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{B}}\right)$, 7.16-7.43, 7.54, 7.64, 7.88 (m, d, t, d, $J=8.8,8.2,7.6 \mathrm{~Hz}, 9 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{NHCH}, \mathrm{C}_{6} \mathrm{H}_{5}$, fluorenyl); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d^{6}): $\delta 37.5,46.6,56.1,65.6,120.1,125.3,125.4,126.2,127.0,127.6$, 128.0, 129.2, 138.3, 140.7, 143.8, 143.8, 155.8, 173.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 409.1523$, found: 409.1519 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3375(\mathrm{CONH}), 3321(\mathrm{CONH}), 3207$ (CONH), 1682 (CON), 1645 (CON), 1623 (CON); The enantiomeric ratio was determined by HPLC $($ Chiralcel AD: hexane/2-propanol $=90 / 10)$: $T_{\mathrm{r}} 22.2 \mathrm{~min}$.

8.6. Fmoc-d-Phe- NH_{2} 10c'

Colorless solid; $>99 \%$ ee; $[\alpha]^{26}{ }_{\mathrm{D}}=+10.6$ (c1.01, DMSO); The enantiomeric ratio was determined by

HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 24.4$ min.

8.7. Cbz-L-Val-NH2 10f

Colorless solid; >99\% ee; mp: $172-175{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}=+17.8$ (c 0.99, DMSO); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d^{6}): $\delta 0.83\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.94 (ddd, $J=6.7,6.8,6.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.80(\mathrm{dd}, J=6.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.03(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{CONH}_{\mathrm{A}}$), $7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}), 7.29-7.39\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CONH}_{\mathrm{B}}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d^{6} : δ 18.0, 19.3, 30.1, 60.0, $65.3,127.6,127.7,128.3,137.1,156.1,173.2 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 273.1210$, found: 273.1193; IR (KBr, $v_{\text {max }} / \mathrm{cm}^{-1}$): 3381 (CONH), 3319 (CONH), 3203 (CONH), 1654 (CON); The enantiomeric ratio was determined by HPLC $($ Chiralcel AD: hexane $/ 2$-propanol $=90 / 10): T_{\mathrm{r}} 11.5 \mathrm{~min}$.

8.8. Cbz-D-Val-NH2 10f'

Colorless solid; >99\% ee; $[\alpha]^{26} \mathrm{D}=-17.9$ ($c 1.00$, DMSO); The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 23.8 \mathrm{~min}$.

8.9. Boc-L-Val-NH2 101

Colorless solid; >99\% ee; mp: $149-152{ }^{\circ} \mathrm{C}$; $[\alpha]^{30}{ }^{\mathrm{D}}=-2.4(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 0.94\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 0.99\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3} \mathrm{CH}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, 2.16 (ddd, $\left.J=6.7,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.96(\mathrm{dd}, J=6.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}$), $5.03,5.42,5.89$ (br, br, br, 1H, 1H, 1H, NH, NH 2); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.8,19.3,28.3,30.8,59.5,79.9$, 156.0, 174.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 239.1366$, found: 239.1340; IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 3386 (CONH), 3345 (CONH), 3205 (CONH), 1680 (CON), 1641 (CON); The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$): $T_{\mathrm{r}} 9.4 \mathrm{~min}$.

8.10. Boc-d-Val-NH2 10I'

Colorless solid; 98% ee; $[\alpha]^{26}{ }_{\mathrm{D}}=+1.4$ (c 1.00, MeOH); The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$): $T_{\mathrm{r}} 7.5 \mathrm{~min}$.

8.11. Fmoc-L-Val-NH2 $\mathbf{N a m}^{\mathbf{1 0}}$

Colorless solid; $>99 \%$ ee; mp: $204-206{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }^{\mathrm{D}}=-3.0\left(c 0.99\right.$, DMSO); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d ${ }^{6}$): $\delta 0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 0.87 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.96 (ddd, $J=6.8,7.0,8.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.80(\mathrm{dd}, J=7.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 4.22-4.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}, \mathrm{CHCH}_{2} \mathrm{O}\right)$, 7.04 (br, 1H, $\mathrm{CONH}_{\mathrm{A}}$), 7.29-7.44, 7.75, 7.90 (m, d, d, $J=5.9,7.5 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{NHCH}, \mathrm{CONH}_{\mathrm{B}}$, fluorenyl); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d^{6}): $\delta 18.0,19.2,30.1,46.6,60.0,65.6,120.0,125.3,127.0$, 127.5, 140.6, 143.7, 143.8, 156.0, 173.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 361.1523, found: 361.1509 ; IR ($\mathrm{KBr}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3369 (CONH), 3311 (CONH), 3197 (CONH), 1689
(CON), $1660(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2propanol $=90 / 10$): $T_{\mathrm{r}} 20.7 \mathrm{~min}$.

8.12. Fmoc-d-Val-NH2 10 m '

Colorless solid; $>99 \%$ ee; $[\alpha]^{25}{ }_{\mathrm{D}}=+2.7$ (c 1.00, DMSO); The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 13.3 \mathrm{~min}$.

8.13. Cbz-L-Met-NH2 10h

Colorless solid; $>99 \%$ ee; mp: $108-112{ }^{\circ} \mathrm{C} ;[\alpha]^{30}{ }_{\mathrm{D}}=-14.9(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.96-2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\right), 2.08-2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.52-2.66(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.37-4.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.39,5.46,6.08(\mathrm{br}, \mathrm{br}, \mathrm{br}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}$, $\left.\mathrm{NH}, \mathrm{NH}_{2}\right), 7.31-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.3,30.1,31.6,53.5,67.2$, 128.1, 128.3, 128.6, 136.1, 156.3, 173.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 305.0930, found: 305.0908 ; IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$) $=3386(\mathrm{CONH}), 3315(\mathrm{CONH}), 3201$ (CONH), 1655 $(C O N)$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol $=90 / 10)$: $T_{\mathrm{r}} 21.2 \mathrm{~min}$.

8.14. Cbz-D-Met-NH2 10h'

Colorless solid; $>99 \%$ ee; $[\alpha]^{29} \mathrm{D}=+13.3(c 0.99, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 25.5 \mathrm{~min}$.

8.15. Boc-L-Met-NH2 10n

Colorless solid; >99\% ee; mp: 118-120 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=-8.3(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.45\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.89-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\right), 2.08-2.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{B} \mathrm{CH}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~S}\right), 2.53-2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.99-4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.16,5.46,6.19(\mathrm{br}, \mathrm{br}, \mathrm{br}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH}$, NH_{2}) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.4,28.4,30.2,31.7,53.1,80.3,155.7,174.3$; HRMS (ESITOF): Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 271.1087, found: 271.1095; IR ($\mathrm{KBr}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3390 (CONH), $3346(\mathrm{CONH}), 3188(\mathrm{CONH}), 1684(\mathrm{CON}), 1660(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95/5): $T_{\mathrm{r}} 17.4 \mathrm{~min}$.

8.16. Boc-d-Met-NH2 10n'

Colorless solid; $>99 \%$ ee; $[\alpha]^{26}{ }_{\mathrm{D}}=+5.0(c 1.00, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95/5): $T_{\mathrm{r}} 15.1 \mathrm{~min}$.

8.17. Fmoc-L-Met-NH2 $\mathbf{1 0 0}$

Colorless solid; $>99 \%$ ee; mp: 181-184 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=-2.0(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d^{6}): $\delta 1.78-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\right), 1.88-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.39-2.50$
$\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.99-4.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.22-4.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 7.04\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{A}}\right)$, 7.33-7.49, 7.72-7.75, 7.90 (m, m, d, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{NHCH}, \mathrm{CONH}_{\mathrm{B}}$, fluorenyl); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d^{6}): $\delta 14.5,29.7,31.5,46.6,53.6,65.5,120.0,125.2,127.0,127.5,140.6,143.7$, 143.8, 155.9, 173.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 305.0930, found: 305.0908; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 3367 (CONH), 3319 (CONH), 3201 (CONH), 1685 (CON), 1647 (CON), 1626 (CON); The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2propanol = 80/20): $T_{\mathrm{r}} 9.9 \mathrm{~min}$.

8.18. Fmoc-d-Met-NH2 $\mathbf{1 0 0}^{\text {' }}$

Colorless solid; $>99 \%$ ee; $[\alpha]^{27}{ }_{\mathrm{D}}=+1.5$ ($c 1.00, \mathrm{DMSO}$); The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol $=80 / 20$): $T_{\mathrm{r}} 13.6 \mathrm{~min}$.

8.19. Cbz-L-Ala-NH2 10e

Colorless solid; >99\% ee; mp: $128-130{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-4.9(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.39\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23-4.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 5.08(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.12\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.48,5.74,6.19\left(\mathrm{br}, \mathrm{br}, \mathrm{br}, 1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{NH}_{2}\right)$, 7.29-7.38 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 18.5,50.1,67.1,128.0,128.2,128.6,136.1$, 156.1, 175.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 245.0897, found: 245.0916; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3394(\mathrm{CONH}), 3311(\mathrm{CONH}), 3197(\mathrm{CONH}), 1682(\mathrm{CON}), 1643(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol =90/10): $T_{\mathrm{r}} 13.6 \mathrm{~min}$.

8.20. Cbz-d-Ala-NH2 $10{ }^{\text {' }}$

Colorless solid; 99% ee; $[\alpha]^{24}{ }_{\mathrm{D}}=+3.8(c 1.01, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol =90/10): $T_{\mathrm{r}} 15.7 \mathrm{~min}$.

8.21. Cbz-L-Gln-NH2 10p

Colorless solid; 198-200 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+11.7(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$): $\delta 1.65-$ $1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\right), 1.82-1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}\right), 2.07-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.86-3.92(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.76\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{A}}\right), 7.02\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}_{\mathrm{B}}\right), 7.28-7.39\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NH}, \mathrm{NH}_{2}\right.$, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d^{6}): $\delta 27.7,31.5,54.3,65.4,127.7,127.8,128.4,137.1,155.9$, 173.6, 173.7; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 302.1111, found: 302.1115; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 3446(\mathrm{CONH}), 3423(\mathrm{CONH}), 3328(\mathrm{CONH}), 3203(\mathrm{CONH}), 1658(\mathrm{CON})$.

8.22. Cbz-d-GIn-NH2 10p,

Colorless solid; $[\alpha]^{25} \mathrm{D}=-10.5$ (c 0.99, DMSO).

8.23. Cbz-L-Leu-NH2 10 g

Colorless solid; $>99 \%$ ee; mp: 123-125 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}=-11.2(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.95\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right), 1.51-1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{A} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.66-1.74(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{B} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.19-4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.12,5.39,6.00(\mathrm{br}$, br, br, $1 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{NH}_{2}$), 7.30-7.39 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.9,22.9$, 24.7, 41.3, 53.1, 67.1, 128.0, 128.3, 128.6, 136.1, 156.4, 174.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 287.1366$, found: 287.1396; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3392$ (CONH), 3321 (CONH), 3203 (CONH), 1666 (CON); The enantiomeric ratio was determined by HPLC (Chiralcel AD : hexane/2-propanol = 90/10): $T_{\mathrm{r}} 10.7 \mathrm{~min}$.

8.24. Cbz-d-Leu-NH2 10 g ,

Colorless solid; $>99 \%$ ee; $[\alpha]^{27} \mathrm{D}=+11.1(c 1.00, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 90/10): $T_{\mathrm{r}} 14.4 \mathrm{~min}$.

8.25. Cbz-L-Trp-NH2 10i

Colorless solid; $>99 \%$ ee; $\mathrm{mp}: 186-188^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=-30.0\left(c 1.00\right.$, DMSO); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d^{6}): $\delta 2.90$ (dd, $J=9.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$-indole), 3.10 (dd, $J=4.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$-indole), 4.21 (ddd, $J=4.3,8.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.92\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.96(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), 6.95-6.98, 7.04-7.08, 7.14, 7.25-7.35 (m, m, s, m, 1H, $2 \mathrm{H}, 1 \mathrm{H}, 7 \mathrm{H}, \mathrm{CONH}_{\mathrm{A}}, \mathrm{C}_{6} \mathrm{H}_{5}$, indolyl), $\left.7.47\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}_{\mathrm{B}}\right), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCHCH})_{2}\right), 10.81(\mathrm{br}, 1 \mathrm{H}$, indoleNH$) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d^{6}): $\delta 27.7,55.3,65.1,110.2,111.2,118.1,118.4,120.7,123.6,127.2,127.4$, 127.6, 128.2, 136.0, 136.9, 155.7, 173.7; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 360.1319 , found: 360.1329 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3402(\mathrm{NH}), 3313(\mathrm{OH}), 1716\left(\mathrm{CO}_{2}\right), 1662(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 85/15): $T_{\mathrm{r}} 26.1$ min.

8.26. Cbz-d-Trp-NH2 10i’

Colorless solid; >99\% ee; $[\alpha]^{27} \mathrm{D}=+29.2$ (c 0.99, DMSO); The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 85/15): $T_{\mathrm{r}} 24.2 \mathrm{~min}$.

8.27. Boc- O-Bn-L-Ser-NH2 $\mathbf{1 0 j}$

Colorless solid; >99\% ee; mp: $86-89^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}=+13.9(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \times 3\right), 3.58\left(\mathrm{dd}, J=6.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{CH}\right), 3.93\left(\mathrm{dd}, J=3.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}\right)$, 4.24-4.36 (m, 1H, CH), $4.53\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.61\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 5.42, 6.44 (br, br, 2H, 1H, NH, NH_{2}), 7.29-7.38 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.3$, $53.6,69.8,73.5,80.3,127.8,128.0,128.5,137.4,155.5,172.8$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 317.1472$, found: 317.1490; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3390(\mathrm{CONH}), 3346$
(CONH), $3192(\mathrm{CONH}), 1685(\mathrm{CON}), 1660(\mathrm{CON})$; The enantiomeric ratio was determined by HPLC(Chiralcel AD: hexane/2-propanol = 95/5): $T_{\mathrm{r}} 23.8 \mathrm{~min}$.

8.28. Boc- O-Bn-d-Ser-NH2 10 j'

Colorless solid; $>99 \%$ ee; $[\alpha]^{27}{ }_{\mathrm{D}}=-12.2(c 1.00, \mathrm{MeOH})$; The enantiomeric ratio was determined by HPLC (Chiralcel AD: hexane/2-propanol = 95/5): $T_{\mathrm{r}} 25.4 \mathrm{~min}$.

9. Typical procedure for the amidation of Cbz-L-Phe-OH 5a with hydroxylamine hydrochloride 11h

To a colorless solution of $150 \mathrm{mg}(0.50 \mathrm{mmol})$ of Cbz-L-Phe-OH 5a in 10 mL of THF were added at $0{ }^{\circ} \mathrm{C} 67 \mu \mathrm{~L}$ ($0.70 \mathrm{mmol}, 1.4$ equiv) of ethyl chloroformate and $209 \mu \mathrm{~L}$ ($1.5 \mathrm{mmol}, 3.0$ equiv) of triethylamine. After stirring for 30 min at $0^{\circ} \mathrm{C}, 0.75 \mathrm{~mL}$ of a 1.0 M aqueous solution of hydroxylamine hydrochloride ($0.75 \mathrm{mmol}, 1.5$ equiv) was added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and 5 mL of $\mathrm{H}_{2} \mathrm{O}$ was added to the resulted mixture. The colorless clear solution was extracted with 30 mL of EtOAc and the aqueous layer was extracted with 20 mL of EtOAc. The organic layers were combined, washed with 5 mL of brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was chromatographed on silica gel with a $1: 1$ mixture of hexane and EtOAc to afford 100 mg (64% yield) of Cbz-L-Phe-NHOH 12ah.

9.1. Cbz-L-Phe-NHEt 12aa

Colorless solid; mp: 138-139 ${ }^{\circ} \mathrm{C} ;[\alpha]^{26} \mathrm{D}=-6.6(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97$ (t, $\left.J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.99\left(\mathrm{dd}, J=8.1,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.12-3.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), $4.30\left(\mathrm{dd}, J=7.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.34,5.43(\mathrm{br}, \mathrm{br}, 1 \mathrm{H}$, $1 \mathrm{H}, \mathrm{NH} \times 2$), 7.19-7.38 (m, 10H, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.5,34.3,39.0,59.5$, 67.0, 127.0, 128.0, 128.2, 128.6, 128.7, 129.3, 136.2, 136.6, 155.9, 170.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 349.1523$, found: 349.1513 ; IR $\left(\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}\right)=3315(\mathrm{CONH}), 1689$ (CON), 1651 (CON).

9.2. Cbz-L-Phe-NHCH2CH2 ${ }_{2}$ 12ab

Colorless solid; mp: $118-120^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-6.8(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.56-$ $2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.99\left(\mathrm{dd}, J=7.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.10(\mathrm{dd}, J=6.0,13.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.23-3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.29\left(\mathrm{dd}, J=6.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.07(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 5.28, $5.60(\mathrm{br}, \mathrm{br}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH} \times 2), 7.02,7.16-7.38\left(\mathrm{~d}, \mathrm{~m}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 13 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\times 3$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.6,38.9,40.7,56.6,67.2,126.7,127.2,128.1,128.4,128.7$, 128.7, 128.8, 129.4, 136.2, 136.6, 138.6, 156.0, 170.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 425.1836$, found: 425.1827 ; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3305(\mathrm{CONH}), 1687(\mathrm{CON}), 1651(\mathrm{CON})$.

9.3. Cbz-L-Phe-cyclohexyINH 12ac

Colorless solid; mp: $151-153{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+16.8(c 1.00, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.79-$ $0.88,0.92-1.03,1.06-1.15,1.19-1.35,1.51-1.69,1.74-1.81$ (m, m, m, m, m, m, 1H, 1H, 1H, 2H, 4 H , $1 \mathrm{H}, \mathrm{CH}_{2} \times 5$ of cyclohexane), $2.95\left(\mathrm{dd}, J=8.2,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{\mathrm{A}} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.15(\mathrm{dd}, J=5.7,13.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCH}_{\mathrm{B}} \mathrm{C}_{6} \mathrm{H}_{5}$), 3.61-3.69 (m, 1H, CH of cyclohexane), $4.28\left(\mathrm{dd}, J=5.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.25,5.40(\mathrm{br}, \mathrm{br}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{NH} \times 2), 7.19-7.38\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.6,25.4,32.7,32.8,39.2,48.2,56.6,67.0,127.0,128.1,128.2,128.6,128.7$, 129.4, 136.2, 136.6, 155.8, 169.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 403.1992, found: 403.1972; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3317(\mathrm{CONH}), 3275(\mathrm{CONH}), 1689(\mathrm{CON}), 1647(\mathrm{CON})$.

9.4. Cbz-L-Phe-adamantyINH 12ad

Colorless solid; mp: 55-57 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-1.1(c \quad 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.59-$ $1.64\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 1.75-1.82 (m, 6H, $\mathrm{CH}_{2} \times 3$ of adamantane), 1.97-2.04 (m, $3 \mathrm{H}, \mathrm{CH}$ $\times 3$ of adamantane), $2.90\left(\mathrm{dd}, J=8.7,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.14(\mathrm{dd}, J=5.0,13.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.25\left(\mathrm{dd}, J=5.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.00(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 5.43 (br, $1 \mathrm{H}, \mathrm{NH}$), 7.21-7.38 (m, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.3,36.2,39.3$, 41.3, 52.0, 56.9, 66.9, 127.0, 128.0, 128.2, 128.5, 128.7, 129.5, 136.3, 136.8, 155.8, 169.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 455.2305$, found: 455.2277 ; IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 3307 (CONH), 1705 (CON), 1655 (CON).

9.5. Cbz-L-Phe-NMe 212 ae

Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}=+12.9(c 1.21, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.86$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.93-3.03 (m, 2H, $\left.\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.85-4.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.06(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.10\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.69(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.14-7.18,7.21-7.38(\mathrm{~m}, \mathrm{~m}$, $2 \mathrm{H}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 35.5,36.8,40.2,51.9,66.8,127.0,128.0,128.1$, $128.4,128.5,129.4,136.2,136.4,155.6,171.2$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 327.1703, found: 327.1726; IR $\left(\mathrm{NaCl}, \nu_{\max } / \mathrm{cm}^{-1}\right)=3280(\mathrm{CONH}), 1716(\mathrm{CON}), 1639(\mathrm{CON})$.

9.6. Cbz-L-Phe-NEt 2 12af

Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}=-8.7(c 0.99, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.04\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.88-3.11\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} \times 2, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.49-3.58(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.76-4.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.05\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.12(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}$), 5.61 (br, $1 \mathrm{H}, \mathrm{NH}$), 7.18-7.29, 7.30-7.37 (m, m, $5 \mathrm{H}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.8,14.1,40.4,40.5,41.6,51.9,66.8,127.0,128.0,128.1,128.4,128.5,129.6$, 136.3, 136.4, 155.6, 170.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 355.2016$, found: 355.2022; IR $\left(\mathrm{NaCl}, v_{\max } / \mathrm{cm}^{-1}\right)=3273(\mathrm{CONH}), 1716(\mathrm{CON}), 1631(\mathrm{CON})$.

9.7. Cbz-L-Phe-piperidyl 12ag

Pale orange oil; $[\alpha]^{25}{ }_{\mathrm{D}}=+2.5(c 1.01, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97-1.04(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{A} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ of piperidine), 1.34-1.58 (m, $5 \mathrm{H}, \mathrm{CH}_{B} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ of piperidine, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N} \times 2$ of piperidine), $2.97\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right.$ of piperidine), $2.99\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right.$ of piperidine), $3.00(\mathrm{dd}, J=7.3$, $\left.13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{\mathrm{A}} \mathrm{C}_{6} \mathrm{H}_{5}\right) 3.23\left(\mathrm{dd}, J=7.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{\mathrm{A}} \mathrm{C}_{6} \mathrm{H}_{5}\right) 3.48(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$ of piperidine), 4.91 (ddd, $J=7.3,7.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$), $5.06(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.11\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.13-7.38(\mathrm{~m}, 10 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.3,25.3,25.9,40.2,43.1,46.6,51.4,66.7,126.9,128.0$, $128.1,128.5,128.5,129.6,136.2,136.5,155.6,169.3$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 389.1836$, found: 389.1808 ; IR $\left(\mathrm{NaCl}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3280(\mathrm{CONH}), 1716(\mathrm{CON}), 1630$ (CON).

9.8. Cbz-L-Phe-NHOH 12ah

Colorless solid; mp: 139-141 ${ }^{\circ} \mathrm{C} ;[\alpha]^{29} \mathrm{D}=-11.8(c 1.00, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d^{6}): δ $2.78\left(\mathrm{dd}, J=10.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.89\left(\mathrm{dd}, J=4.9,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.10$ (ddd, $\left.J=4.9,8.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 4.92\left(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{A} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.95(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{B} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.18-7.36\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}), 8.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHOH})$, 10.73 (s, 1H, NHOH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d^{6}$): $\delta 37.6,53.9,65.1,126.2,127.4,127.6,128.0$, 128.2, 129.1, 136.9, 137.8, 155.6, 168.0; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 337.1159, found: 337.1129 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3315(\mathrm{OH}), 3255(\mathrm{CONH}), 3143(\mathrm{CONH}), 1701$ (CON), 1668 (CON).
10. Typical procedure for the amidation of (2S,3S)-(+)-2,3-methano-3-phenylpropanoic acid 13 with hydroxylamine hydrochloride 11 h

To a colorless solution of $162 \mathrm{mg}(1.0 \mathrm{mmol})$ of $(2 S, 3 S)-(+)$-2,3-methano-3-phenylpropanoic acid 13 prepared from ($2 S, 3 S$)-(+)-2,3-methano-3-phenylpropanol in 5 mL of THF were added at $-15^{\circ} \mathrm{C}$ $105 \mu \mathrm{~L}$ ($1.1 \mathrm{mmol}, 1.1$ equiv) of ethyl chloroformate and $419 \mu \mathrm{~L}$ ($3.0 \mathrm{mmol}, 3.0$ equiv) of triethylamine After stirring for 10 min at $-15^{\circ} \mathrm{C}, 1.0 \mathrm{~mL}$ of a 2.0 M aqueous solution of hydroxylamine hydrochloride (2.0 mmol , 2.0 equiv) 11 h was added at $-15^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred for 4 h at $-15^{\circ} \mathrm{C}$ and 5 mL of a 1.0 M aqueous HCl solution was added to the resulted mixture. The colorless clear solution was extracted with 10 mL of EtOAc and the aqueous layer was extracted with 10 mL of EtOAc $\times 2$. The organic layers were combined, washed with 5 mL of brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was chromatographed on silica gel with a $15: 1$ mixture of CHCl_{3} and MeOH to afford 146 mg (82% yield) of ($2 S, 3 S$)-(+)- N-hydroxy-2,3-methano-3-phenylpropanamide 14. $(2 S, 3 S)-(+)-14$: colorless solid; mp: $125-127{ }^{\circ} \mathrm{C} ;[\alpha]^{18}{ }_{\mathrm{D}}=+338.1(c 1.13$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.33-1.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.65-1.70(m,2H, CH_{B} of cyclopropane, $\left.\mathrm{CHC}_{6} \mathrm{H}_{5}\right), 2.54-2.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}), 7.06-7.11,7.19-7.23,7.26-7.30(\mathrm{~m}, \mathrm{~m}, \mathrm{~m}$,
$\left.2 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.01(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 8.26(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, few drops of CD_{3} OD for solubility): $\delta 15.5,23.0,24.7,31.3,126.2,126.5,128.5,140.3,171.3$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 200.0682$, found: 200.0655; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3361(\mathrm{CONH})$, 3186 (OH), 1653 (CON).

11. Typical procedure for the Lossen rearrangment of (2S,3S)-(+)-N-hydroxy-2,3-methano-3phenylpropanamide 14

To a colorless solution of $100 \mathrm{mg}(0.565 \mathrm{mmol})$ of $(2 S, 3 S)-(+)$ - N-hydroxy-2,3-methano-3phenylpropanamide 14 and 142 mg (0.622 mmol , 1.1 equiv) of 4-nitrobenzenesulfonyl chloride in 5 mL of anhydrous THF was added at $0^{\circ} \mathrm{C} 250 \mu \mathrm{~L}\left(1.41 \mathrm{mmol}, 2.5\right.$ equiv) of $i-\mathrm{Pr}_{2} \mathrm{NEt}$. After stirring for 2 h at $0^{\circ} \mathrm{C}, 9 \mu \mathrm{~L}$ ($0.113 \mathrm{mmol}, 0.2$ equiv) of N-methylimidazole and $293 \mu \mathrm{~L}$ ($2.82 \mathrm{mmol}, 5.0$ equiv) of benzylalcohol were added to the resulted mixture. The mixture was stirred for 15 h at $35^{\circ} \mathrm{C}$, diluted with 15 mL of EtOAc , and washed with 10 mL of half brine. The aqueous layer was extracted with 10 mL of EtOAc. The organic layers were combined and dried over anhydrous MgSO_{4}. The crude product was chromatographed on silica gel with a $4: 1$ mixture of hexane and EtOAc to afford $131 \mathrm{mg}(87 \%$ yield) of ($1 S, 2 R$)-(+)-N-Cbz-tranylcypromine $15 .(1 S, 2 R)-(+)-15$: colorless solid; mp: 67-69 ${ }^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}$ $=+69.6\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.12-1.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclopropane$)$, 2.05-2.12 (m, 1H, CHCHC ${ }_{6} \mathrm{H}_{5}$), 2.72-2.81 (m, 1H, CHCO), 5.09 (br, 1H, NH), 5.12 (s, 2H, $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.10-7.41 (m, 10H, $\mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.1,25.1,32.6,66.8$, 126.1, 126.6, 128.1, 128.3, 128.5, 136.4, 140.4, 156.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 290.1151$, found: 290.1146; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)=3342(\mathrm{CONH}), 1689(\mathrm{CON})$.

12. Typical procedure for the preparation of $(\mathbf{1 S}, 2 R)-(+)$ - N-acetyltranylcypromine 16

A colorless suspension of $30 \mathrm{mg}(0.11 \mathrm{mmol})$ of $(1 S, 2 R)-(+)-N$-Cbz-tranylcypromine $\mathbf{1 5}$ in 5 mL of a 6.0 M aqueous solution of HCl was stirred for 16 h at reflux and washed with 5 mL of EtOAc $\times 3$. The aqueous layer was concentrated in vacuo to afford a crude ($1 S, 2 R$)-tranylcypromine hydrochloride. To the crude residual solid were added at rt 2 mL of pyridine, $23 \mu \mathrm{~L}(0.22 \mathrm{mmol}, 2.0$ equiv $)$ of $\mathrm{Ac}_{2} \mathrm{O}$, and $31 \mu \mathrm{~L}(0.22 \mathrm{mmol}, 2.0$ equiv) of triethylamine. After stirring for 12 h at rt , the colorless solution was quenched with 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with 10 mL of EtOAc $\times 2$. The organic layers were combined, washed with 5 mL of brine, and dried over MgSO_{4}. The crude product was chromatographed on silica gel with EtOAc to afford 20 mg (quant.) of ($1 S, 2 R$)-(+)-Nacetyltranylcypromine $\mathbf{1 6}$. $(1 S, 2 R)-(+)-\mathbf{1 6}$: colorless solid; 82% ee; mp: $90-93{ }^{\circ} \mathrm{C} ;[\alpha]^{26}{ }_{\mathrm{D}}=+123.9(c$ $1.00, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.14-1.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.20-1.28(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02-2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHC}_{6} \mathrm{H}_{5}\right), 2.87-2.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHNH})$, 5.77 (br, 1H, NH), 7.12-7.32 (m, 5H, C $\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.3,23.1,24.6,126.1$, 126.4, 128.4, 140.5, 171.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NONa}(\mathrm{M}+\mathrm{Na})^{+}: 198.0889$, found: 198.0907; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)=3273(\mathrm{CONH}), 1647(\mathrm{CON})$; The enantiomeric ratio was determined
by HPLC (Chiralcel OD: hexane/2-propanol = 95/5): T_{r} (major) $54.2 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 42.6 min (er 90.9:9.1).

Chapter 3. Synthesis of memantine analogues containing a sigma-1 receptor activity as a candidate of anti-Alzheimer's medicine

13. Typical procedure for acetylation of (Z)-2-phenylbut-2-ene-1,4-diol 34a using PPL ${ }^{12,58}$

To a pale yellow suspension of $164 \mathrm{mg}(1.00 \mathrm{mmol})$ of (Z)-2-phenylbut-2-ene-1,4-diol 34a, 0.92 $\mathrm{mL}(10.0 \mathrm{mmol}, 10$ equiv) of vinyl acetate, and $82 \mathrm{mg}(50 \mathrm{w} / \mathrm{w} \%)$ of PPL in 3 mL of 1,4 -dioxane was stirred at rt for 24 h . The reaction suspension was diluted with 10 mL of EtOAc and dried over anhydrous MgSO_{4}. The residue was chromatographed on silica gel with a 1:2 mixture of EtOAc and hexane to afford 187 mg (91% yield) of (Z)-4-hydroxy-3-phenylbut-2-en-1-yl acetate $\mathbf{1 7 a}$.

13.1. (Z)-4-Hydroxy-3-phenylbut-2-en-1-yl acetate $17 \mathbf{a}^{12,58}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.45(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.60(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.88\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.28-7.38,7.48-7.50(\mathrm{~m}$, $\mathrm{m}, 3 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 21.1,60.1,61.2,124.3,126.4,128.0,128.6,140.1$, 143.9, 171.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 229.0835$, found: 229.0815 .

13.2. (Z)-4-Hydroxy-3-(4-methoxyphenyl)but-2-en-1-yl acetate $17 b^{12,58}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.43(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.81$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.58\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.85\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.86(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.91,7.14\left(\mathrm{~d}, \mathrm{~d}, J=8.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1$, $55.3,60.0,61.3,113.9,122.5,127.6,132.4,143.4,159.5,171.5$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 259.0941$, found: 259.0915 .

13.3. (Z)-4-Hydroxy-3-(4-methylphenyl)but-2-en-1-yl acetate $17 \mathbf{c}^{12,58}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.35(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}, 1 \mathrm{H}, \mathrm{ArCH} 3, \mathrm{OH})$, $4.59\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.87\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 7.16, $7.39\left(\mathrm{~d}, \mathrm{~d}, J=8.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.0,21.1,60.0,61.2$, 123.4, 126.3, 129.3, 137.1, 137.9, 143.8, 171.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 243.0992, found: 243.1007 .

13.4. (Z)-3-(4-Chlorophenyl)-4-hydroxybut-2-en-1-yl acetate 17d ${ }^{12,58}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.49-2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 4.56(\mathrm{~d}, J$
$\left.=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.86\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.31,7.44$ (d, d, $J=8.6 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,59.9,61.1,124.7$, 127.8, 128.7, 133.9, 138.6, 142.8, 171.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 263.0445, found: 263.0425 .

13.5. (Z)-3-(4-Bromophenyl)-4-hydroxybut-2-en-1-yl acetate 17 e

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right.$), $2.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.57(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 4.86 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}$), 5.91 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $7.38,7.48$ (d, d, $\left.J=8.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,59.9,61.1,122.0,124.7,128.1$, 131.6, 139.1, 142.8, 171.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{Na}$ (M+Na) ${ }^{+}: 306.9940$, found: 306.9964 .

14. Typical procedure for preparation of (Z)-4-(tert-butyldiphenylsiloxy)-3-phenylbut-2-en-1-yl

 acetate 18a. ${ }^{58}$To a colorless solution of $206 \mathrm{mg}(1.00 \mathrm{mmol})$ of (Z)-4-hydroxy-3-phenylbut-2-en-1-yl acetate 17a in 5 mL of pyridine was added 330 mg (1.20 mmol 1.2 equiv) of $t-\mathrm{BuPh}_{2} \mathrm{SiCl}$ under an argon atmosphere. After stirring at rt for 24 h , the reaction mixture was quenched with 10 mL of water and extracted with $10 \mathrm{~mL} \times 3$ of EtOAc. The organic layers were combined, washed with 5 mL of brine, and dried over anhydrous MgSO_{4}. The residue was chromatographed on silica gel with a $1: 8$ mixture of EtOAc and hexane to afford 431 mg (97% yield) of (Z)-4-(tert-butyldiphenylsiloxy)-3-phenylbut-2-en-1-yl acetate 18a.

14.1. (Z)-4-(tert-Butyldiphenylsiloxy)-3-phenylbut-2-en-1-yl acetate 18a ${ }^{\text {58 }}$

Reaction time: 24 h ; Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.03$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.65\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 7.25-7.31, 7.34-7.44, 7.62-7.65 (m, m, m, 3H, 8H, 4H, C ${ }_{6} \mathrm{H}_{5} \times 3$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.1$, $20.8,26.6,61.0,61.3,124.2,126.8,127.3,127.6,128.0,129.7,133.1,135.5,140.3,142.8,170.5 ;$ HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 467.2013, found: 467.2010.

14.2. (Z)-4-(tert-Butyldiphenylsiloxy)-3-(4-methoxyphenyl)but-2-en-1-yl acetate 18b

Reaction time: 24h; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.03(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.62\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.78(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.83,7.31\left(\mathrm{~d}, \mathrm{~d}, J=8.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35-7.45,7.63-7.65$ (m, m, $6 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,21.0,26.7,55.3,61.2,61.4,113.5,122.7$, 127.7, 128.0, 129.7, 132.8, 133.3, 135.7, 142.4, 159.1, 170.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 497.2119$, found: 497.2125.

14.3. (Z)-4-(tert-Butyldiphenylsiloxy)-3-(4-methylphenyl)but-2-en-1-yl acetate 18c

Reaction time: 24h; Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.03$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.65\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.82(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.10,7.25-7.27,7.34-7.45,7.63-7.65(\mathrm{~d}, \mathrm{~m}, \mathrm{~m}, \mathrm{~m}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, 6 \mathrm{H}, 4 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.2,21.0,21.1,26.7,61.3,61.5,123.6,126.7,127.7$, 128.8, 129.7, 133.3, 135.7, 137.2, 137.5, 142.7, 170.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}$ $(\mathrm{M}+\mathrm{Na})^{+}: 481.2175$, found: 481.2178 .

14.4. (Z)-4-(tert-Butyldiphenylsiloxy)-3-(4-chlorophenyl)but-2-en-1-yl acetate 18d

Reaction time: 24h; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), $4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.59\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 7.24-7.29, 7.35-7.46, 7.60-7.63 (m, m, m, 4H, 6H, 4H, C6 $\mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,20.9,26.7,61.0,61.1,124.6,127.7,128.2,129.8,133.1,133.3,135.6,138.8,141.9,170.7$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClO}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 501.1623$, found: 501.1608.

14.5. (Z)-3-(4-Bromophenyl)-4-(tert-butyldiphenylsiloxy)but-2-en-1-yl acetate 18 e

Reaction time: 24 h ; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$), $4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.62\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, $7.22,7.35-7.46,7.60-7.62\left(\mathrm{~d}, \mathrm{~m}, \mathrm{~m}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 8 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 19.2,20.9,26.7,61.0,61.0,121.5,124.7,127.8,128.6,129.8,131.2,133.1,135.6,139.3$, 141.9, 170.7; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrO}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 545.1118$, found: 545.1114.

15. Typical procedure for preparation of (Z)-4-(tert-butyldiphenylsiloxy)-3-phenylbut-2-en-1-ol

 $19 a^{58}$To a colorless solution of $907 \mathrm{mg}(2.03 \mathrm{mmol})$ of (Z)-4-(tert-butyldiphenylsiloxy)-3-phenylbut-2-en-1-yl acetate 18a in 58 ml of $1: 1$ mixture of $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ was added a catalytic amount (3 drops) of $28 \% \mathrm{MeONa}$ solution in MeOH . The mixture was stirred at rt for 5 h and quenched with 5 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with $10 \mathrm{~mL} \times 2$ of EtOAc. The organic layers were combined, washed with 10 mL of brine, and dried over anhydrous MgSO_{4}. The residue was chromatographed on silica gel with a $5: 1$ mixture of hexane and EtOAc to afford 821 mg (quantitative yield) of (Z)-4-(tert-butyldiphenylsiloxy)-3-phenylbut-2-en-1ol 19a.

15.1. (Z)-4-(tert-Butyldiphenylsiloxy)-3-phenylbut-2-en-1-ol 19a ${ }^{58}$

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.64(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.16(\mathrm{dd}, J=$ 6.4, 6.4 Hz, 2H, CH2OH), $4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 5.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.23-7.46,7.64-7.66$ (m, m, 11H, 4H, $\mathrm{C}_{6} \mathrm{H}_{5} \times 3$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.1,26.7,59.3,61.6,126.8,127.3,127.7$,
128.1, 129.7, 129.8, 133.2, 135.7, 140.8, 141.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 425.1907 , found: 425.1915 .

15.2. (Z)-4-(tert-Butyldiphenylsiloxy)-3-(4-chlorophenyl)but-2-en-1-ol 19d

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.53(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.11$ (dd, $\left.J=6.2,6.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 5.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.24-7.29,7.36-$ 7.47, 7.62-7.64 (m, m, m, 4H, 6H, 4H, C6 $\mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.1,26.7$, 59.2, 61.2, 127.8, 128.1, 128.3, 129.9, 130.0, 133.1, 135.7, 139.1, 140.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{ClO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 459.1518$, found: 459.1526 .

15.3. (Z)-3-(4-Bromophenyl)-4-(tert-butyldiphenylsiloxy)but-2-en-1-ol 19e

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.11(\mathrm{dd}, J=$ 6.3, $6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), $4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 5.94(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.21,7.36-7.47,7.62-$ $7.64\left(\mathrm{~d}, \mathrm{~m}, \mathrm{~m}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 8 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,26.7$, 59.2, 61.1, 121.3, 127.8, 128.5, 129.9, 130.0, 131.2, 133.1, 135.7, 139.6, 140.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BrO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 503.1012, found: 503.1017.

16. Typical procedure for preparation of (Z)-4-(tert-butyldiphenylsiloxy)-3-(4-methoxyphenyl) but-2-en-1-ol 19b. ${ }^{58}$

To a colorless solution of $588 \mathrm{mg}(1.2 \mathrm{mmol})$ of (Z)-4-(tert-butyldiphenylsiloxy)-3-(4-methoxyphenyl)but-2-en-1-yl acetate 18b in 5 mL of anhydrous THF was added dropwise at $-78{ }^{\circ} \mathrm{C}$ 3.1 mL ($2.6 \mathrm{mmol}, 2.1$ equiv) of a 1.03 M DIBAL-H solution in hexane under an argon atmosphere. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and quenched at $-78^{\circ} \mathrm{C}$ with 2 mL of MeOH . To the reaction mixture was added a solution of 7.20 g of potassium sodium tartarate in 20 mL of water. After stirring at rt for 3 h , the reaction mixture was extracted with $20 \mathrm{~mL} \times 3$ of EtOAc. The EtOAc layers were combined, washed with brine, and dried over anhydrous MgSO_{4}. The residue was chromatographed on silica gel with a $5: 1$ mixture of hexane and EtOAc to afford $466 \mathrm{mg}(90 \%$ yield) of (Z)-4-(tert-butyldiphenylsiloxy)-3-(4-methoxyphenyl)but-2-en-1-ol 19b.

16.1. (Z)-4-(tert-Butyldiphenylsiloxy)-3-(4-methoxyphenyl)but-2-en-1-ol 19b

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.55-1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.82(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.13\left(\mathrm{dd}, J=6.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 5.92(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.82,7.29\left(\mathrm{~d}, \mathrm{~d}, J=8.9,8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.36-7.46,7.64-7.67\left(\mathrm{~m}, \mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 19.2,26.7,55.3,59.3,61.6,113.5,127.7,127.9,128.2,129.8,133.2$, 135.7, 140.7, 159.0; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 455.2013, found: 455.2038 .

16.2. (Z)-4-(tert-Butyldiphenylsiloxy)-3-(4-methylphenyl)but-2-en-1-ol 19c

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.63$ (br, $1 \mathrm{H}, \mathrm{OH}$), $2.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.15\left(\mathrm{dd}, J=6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 5.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, 7.09, 7.24 (d, d, $J=8.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.36-7.46, 7.64-7.67 (m, m, 6H, 4H, C6 $\mathrm{C}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 19.2,21.1,26.7,59.3,61.7,126.6,127.7,128.8,129.0,129.8,133.2$, 135.7, 137.0, 137.9, 141.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 439.2064, found: 439.2090 .

17. Typical procedure for cyclopropanation of 19 a in the presence of a catalytic amount of L1. ${ }^{58}$

To a colorless solution of $201 \mathrm{mg}(0.50 \mathrm{mmol})$ of (Z)-4-(tert-butyldiphenylsiloxy)-3-phenylbut-2-en-1-ol 19a and 19 mg ($0.05 \mathrm{mmol}, 0.1$ equiv) of the disulfonamide $\mathbf{L} \mathbf{1}$ in 7.5 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added dropwise at $-40^{\circ} \mathrm{C}$ under an argon atmosphere $1.0 \mathrm{~mL}(1.00 \mathrm{mmol}, 2.0$ equiv) of 1.0 M $\mathrm{Et}_{2} \mathrm{Zn}$ solution in hexane and $121 \mu \mathrm{~L}\left(1.50 \mathrm{mmol}, 3.0\right.$ equiv) of $\mathrm{CH}_{2} \mathrm{I}_{2}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with 0.3 mL of triethylamine and extracted with $20 \mathrm{~mL} \times 3$ of EtOAc. The organic layers were combined, washed with 5 mL of brine, and dried over MgSO_{4}. The residue was chromatographed on silica gel with a 8:1 mixture of hexane and EtOAc to afford 208 mg (quantitative yield) of ($2 S, 3 R$)-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-phenylbutan-1-ol 20a.

17.1. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-phenylbutan-1-ol 20a ${ }^{58}$

Colorless oil; 71% ee; $[\alpha]^{28}{ }_{\mathrm{D}}=+51.2\left(c 1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.69(\mathrm{dd}, J=$ $5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane $), 0.96\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 0.96-0.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), 1.81-1.89 (m, 1H, $\left.\mathrm{CHCH}_{2} \mathrm{OH}\right), 3.45-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{OH}\right), 3.55(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.06\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 4.12-4.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 7.05-7.07,7.11-7.15$, 7.28-7.45, 7.56-7.59 (m, m, m, m, $2 \mathrm{H}, 2 \mathrm{H}, 9 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.0$, $19.0,25.8,26.7,32.5,63.7,69.2,126.8,127.5,127.9,128.2,129.5,129.8,130.6,131.7,132.7,135.4$, 135.5, 143.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 439.2064, found: 439.2069; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95/5) T_{r} (major) 5.1 \min , T_{r} (minor) $4.3 \mathrm{~min}(\mathrm{er} 85.7: 14.3)$.
17.2. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-(4-methoxyphenyl)butan-1-ol 20b

Colorless oil; 36% ee; $[\alpha]^{23}{ }_{\mathrm{D}}=+34.8\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.65(\mathrm{dd}, J=$ $5.2,5.3, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane $), 0.91-0.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane $), 0.97(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.76-1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.43-3.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.03\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 4.11-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 6.85,7.08-7.16,7.29-7.45$, 7.56-7.59 (d, m, m, m, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 4 \mathrm{H}, 6 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $16.1,19.0,26.0,26.7,31.7,55.4,63.8,69.4,113.5,127.5,127.8,129.5,129.8,131.6,131.8,132.8$, 135.4, 135.6, 136.2, 142.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 469.2169$, found:
469.2178; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95/5) T_{r} (major) $5.2 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 4.7 min (er 68:32).

17.3. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-(4-methylphenyl)butan-1-ol 20c

Colorless oil; 65% ee; $[\alpha]^{20}{ }_{\mathrm{D}}=+56.7\left(c 1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.66(\mathrm{dd}, J=$ $5.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), 0.93-0.96 (m, 1H, CH C_{B} of cyclopropane), $0.97(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.78-1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.44-3.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{A} \mathrm{OH}\right.$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.05\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 4.11-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 7.05-7.13,7.27-7.45,7.56-$ 7.59 (m, m, m, 6H, 6H, 2H, $\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.1,19.0,21.1,25.9$, $26.7,32.0,63.8,69.3,127.5,127.8,128.8,129.5,129.8,130.4,131.8,132.8,135.4,135.6,136.3$, 141.0; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 453.2220$, found: 453.2231; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$) T_{r} (major) 4.5 \min , T_{r} (minor) $4.1 \min (e r 82.4: 17.6)$.

17.4. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-3-(4-chlorophenyl)-2,3-methanobutan-1-ol 20d

Colorless oil; 66% ee; $[\alpha]^{21}{ }_{\mathrm{D}}=+75.8\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.70(\mathrm{dd}, J=$ $5.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), 0.93 (dd, $J=5.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), 0.97 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.76-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.45-3.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.02(\mathrm{~d}, J=$ $\left.10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 4.11-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 7.09-7.12,7.15-7.19,7.24-7.46,7.54-7.56(\mathrm{~m}, \mathrm{~m}$, $\mathrm{m}, \mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}, 8 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.1,19.0,26.0,26.8,31.9$, 63.6, 69.0, 127.6, 127.8, 128.3, 129.7, 129.9, 131.8, 132.6, 135.4, 135.5, 142.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ClO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 473.1674$, found: 473.1676; The enantiomeric ratio was determined by HPLC (Chiralcel OD-H: hexane/2-propanol $=99.9 / 0.01$) after acetylation T_{r} (major) $18.0 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 14.5 min (er 83:17).
17.5. (2S,3R)-3-(4-Bromophenyl)-4-(tert-butyldiphenylsiloxy)-2,3-methanobutan-1-ol 20e

Colorless oil; 73% ee; $[\alpha]^{22}{ }_{\mathrm{D}}=+82.6\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.70(\mathrm{dd}, J=$ $5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), $0.93\left(\mathrm{dd}, J=5.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), 0.97 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.77-1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.45-3.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.02(\mathrm{~d}, J=$ $\left.11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 4.11-4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 7.09-7.11,7.16-7.24,7.32-7.45,7.54-7.56(\mathrm{~m}, \mathrm{~m}$, m, m, $2 \mathrm{H}, 4 \mathrm{H}, 6 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.1$, 19.0, 25.9, 26.8, 32.0, 63.5, 68.9, 120.7, 127.6, 127.9, 129.7, 129.9, 131.2, 131.6, 132.2, 132.6, 135.4, 135.5, 143.0; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 517.1169$, found: 517.1159; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=99 / 1$) T_{r} (major) $9.0 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 8.2 $\min ($ er 86.6:13.4).

18. Typical procedure for oxidation of the alcohol 20 a into the aldehyde 21a. ${ }^{58}$

To a solution of $204 \mathrm{mg}(0.46 \mathrm{mmol})$ of $(2 S, 3 R)-4$-(tert-butyldiphenylsiloxy)-2,3-methano-3-phenylbutan-1-ol 20a in 5 mL of dimethylsulfoxide (DMSO) was added at $\mathrm{rt} 320 \mathrm{mg}(1.14 \mathrm{mmol}, 2.5$ equiv) of 2-iodoxybenzoic acid (IBX). After stirring at rt for $3 \mathrm{~h}, 10 \mathrm{~mL}$ of EtOAc was added to the reaction mixture. The suspension was filtered through Celite. The filtrate was combined with 10 mL of half brine and extracted with $10 \mathrm{~mL} \times 3$ of EtOAc. The EtOAc layers were combined, washed with brine, and dried over anhydrous MgSO_{4}. The resiue was chromatographed on silica gel with a $8: 1$ mixture of hexane and EtOAc to afford 191 mg (94% yield) of ($2 S, 3 R$)-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-phenylbutanal 21a.

18.1. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-phenylbutanal 21a ${ }^{58}$

Colorless oil; 71\% ee derived from 20a; $[\alpha]^{28} \mathrm{D}=+57.4\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.49\left(\mathrm{dd}, J=4.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane$), 1.79(\mathrm{dd}, J=4.9,5.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $2.30(\mathrm{dt}, J=8.1,5.3 \mathrm{~Hz} \mathrm{1H}, \mathrm{CHCHO}), 3.76(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.04\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 7.19-7.43,7.49-7.52\left(\mathrm{~m}, \mathrm{~m}, 13 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3\right), 9.63$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.6,19.1,26.6,34.3,41.1,66.5,127.4$, 127.5, 127.7, 128.4, 129.5, 129.7, 129.8, 132.8, 132.9, 135.4, 135.5, 142.0, 200.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 437.1907, found: 437.1900.
18.2. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-(4-methoxyphenyl)butanal 21b

Colorless oil; 36% ee derived from 20b; $[\alpha]^{20}{ }_{\mathrm{D}}=+29.4$ (c $1.00, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.46\left(\mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.76(\mathrm{dd}, J=4.8,5.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $2.24(\mathrm{dt}, J=8.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CHO}), 3.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.02\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 6.85,7.20-7.43,7.50-7.52(\mathrm{~d}, \mathrm{~m}$, $\mathrm{m}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 10 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$), $9.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 18.8,19.1,26.7,34.7,40.4,55.4,66.7,113.7,127.5,127.7,129.5,129.7,130.8,132.9$, $133.0,134.3,135.5,135.5,158.9,200.2$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 467.2013, found: 467.2010.

18.3. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-(4-methylphenyl)butanal 21c

Colorless oil; 65% ee derived from 20c; $[\alpha]^{20}{ }_{\mathrm{D}}=+53.2\left(c 1.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.46\left(\mathrm{dd}, J=4.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.78(\mathrm{dd}, J=4.8,5.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $2.26(\mathrm{dt}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHO}), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75(\mathrm{~d}, J$ $\left.=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.04\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 7.12-7.14,7.19-7.42,7.50-7.52(\mathrm{~m}, \mathrm{~m}$, $\left.\mathrm{m}, 2 \mathrm{H}, 10 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 9.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 18.7, 19.1, 21.1, 26.7, 34.5, 40.8, 66.6, 127.5, 127.7, 129.0, 129.5, 129.6, 129.7, 132.9, 133.0, 135.5, 135.5, 137.1 139.1, 200.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 451.2064, found: 451.2087.

18.4. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-3-(4-chlorophenyl)-2,3-methanobutanal 21d

Colorless oil; 66% ee derived from 20d; $[\alpha]^{20}{ }_{\mathrm{D}}=+69.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.44\left(\mathrm{dd}, J=5.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.77(\mathrm{dd}, J=5.0,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $2.25(\mathrm{dt}, J=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHO}), 3.75(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.00\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 7.21-7.43,7.48-7.50\left(\mathrm{~m}, \mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right)$, 9.61 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.6,19.1,26.7,34.2,40.4,66.3$, 127.6, 127.7, 128.5, 129.6, 129.8, 131.1, 132.7, 132.8, 133.3, 135.4, 135.5, 140.5, 199.6; HRMS (ESITOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{ClO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 471.1518$, found: 471.1496 .

18.5. (2S,3R)-3-(4-Bromophenyl)-4-(tert-butyldiphenylsiloxy)-2,3-methanobutanal 21e

Colorless oil; 73\% ee derived from 20e; $[\alpha]^{19} \mathrm{D}=+77.5\left(c 1.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.96\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.44\left(\mathrm{dd}, J=5.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.77(\mathrm{dd}, J=5.0,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $2.25(\mathrm{dt}, J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CHO}), 3.75(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.00\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 7.21-7.50\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 9.61(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 18.5,19.1,26.7,34.1,40.5,66.3,121.4,127.6,127.7$, 129.6, 129.8, 131.4, 132.7, 132.8, 135.4, 135.5, 141.1, 199.5; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 515.1012$, found: 515.1010.

19. Typical procedure for oxidation of the aldehyde 21a into the carboxylic acid 22a. ${ }^{58}$

To a colorless solution of $187 \mathrm{mg}(0.45 \mathrm{mmol})$ of ($2 S, 3 R$)-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-phenylbutanal 21a and $16 \mathrm{mg}\left(0.14 \mathrm{mmol}, 0.3\right.$ equiv) of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in 5.5 mL of a $10: 1$ mixture of MeCN and water were added at $0{ }^{\circ} \mathrm{C} 61 \mu \mathrm{~L}$ ($0.54 \mathrm{mmol}, 1.2$ equiv) of $35 \% \mathrm{aq} . \mathrm{H}_{2} \mathrm{O}_{2}$ solution and a solution of $76 \mathrm{mg}\left(0.68 \mathrm{mmol}, 1.5\right.$ equiv.) of NaClO_{2} in 2 mL of water. After stirring at rt for $3 \mathrm{~h}, 1 \mathrm{~mL}$ of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution was added to the reaction mixture. The resulted mixture was adjusted to pH 3 with 1.0 M aq. HCl solution and extracted with $10 \mathrm{~mL} \times 3$ of EtOAc. The combined EtOAc layers were washed with brine and dried over anhydrous MgSO_{4}. The residue was chromatographed on silica gel with a 5:1 mixture of hexane and EtOAc to afford 190 mg (98% yield) of (2S,3R)-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-phenylbutanoic acid 22a.

19.1. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-phenylbutanoic acid 22a ${ }^{58}$

Colorless solid; 71\% ee derived from 20a; mp: 143-145 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}=+57.4\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.92\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.38\left(\mathrm{dd}, J=4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.55\left(\mathrm{dd}, J=4.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), $2.18\left(\mathrm{dd}, J=5.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right), 3.98$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}$), 7.15-7.23, 7.28-7.38, 7.43-7.46, 7.50-7.52 (m, m, m, m, 4H, 7H, 2H, $2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3$), 11.59 (br, $1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$); ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 19.2,24.5,26.5,39.6,66.4,127.2,127.4,127.6$, 128.2, 129.3, 129.5, 130.1, 133.2, 133.4, 135.4, 135.5, 142.7, 178.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 453.1856$, found: 453.1852
19.2. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-(4-methoxyphenyl)butanoic acid 22b Colorless solid; 36% ee derived from 20b; mp: 93-94 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}=+38.0\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.94\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1,32-1.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.52(\mathrm{dd}, J=$ $4.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), 2.11-2.16(m, $\left.1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.95(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OSi}$), $6.86,7.17-7.39,7.50-7.52\left(\mathrm{~d}, \mathrm{~m}, \mathrm{~m}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 10 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right.$), $9.55(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,19.4,24.6,26.6,38.8,55.4,66.5,113.5,127.4,127.5$, 129.3, 129.5, 131.1, 133.2, 133.4, 134.9, 135.5, 135.5, 158.8, 177.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 483.1962$, found: 483.1978 .
19.3. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-2,3-methano-3-(4-methylphenyl)butanoic acid 22c Colorless solid; 65% ee derived from 20c; mp: 124-127 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+69.3\left(c 0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.92\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1,32-1.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.53(\mathrm{dd}, J=$ $4.8,5.7,1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), 2.12-2.18 (m, 1H, CHCO 2 H$), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.97(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OSi}$), 7.13-7.38, 7.49-7.53 (m, m, $12 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$), $11.80\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.2,19.4,21.1,24.7,26.5,39.2,66.5,127.4,127.5,128.8,129.2,129.4,129.9,133.2$, $133.4,135.5,135.5,136.8,139.7,178.3$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 467.2013, found: 467.2036.

19.4. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-3-(4-chlorophenyl)-2,3-methanobutanoic acid 22d

Colorless solid; 66% ee derived from 20d; mp: $42-44{ }^{\circ} \mathrm{C} ;[\alpha]^{18} \mathrm{D}=+87.8\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.92\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1,35\left(\mathrm{dd}, J=4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.54\left(\mathrm{dd}, J=4.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclpropane), $2.11\left(\mathrm{dd}, J=5.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right), 3.93(\mathrm{~d}$, $\left.J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 3.97\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 7.18-7.39,7.47-7.49(\mathrm{~m}, \mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$), $11.06\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,24.5,26.6,38.7,66.2$, $127.5,127.6,128.3,129.4,129.6,131.3,133.0,133.1,133.2,135.4,135.5,141.1,177.0$; HRMS (ESITOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{ClO}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 487.1467$, found: 487.1465.
19.5. (2S,3R)-3-(4-Bromophenyl)-4-(tert-butyldiphenylsiloxy)-2,3-methanobutanoic acid 22e Colorless sticky oil; 73\% ee derived from 20e; $[\alpha]^{22} \mathrm{D}=+77.9\left(c \quad 1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.92\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1,34\left(\mathrm{dd}, J=4.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.55(\mathrm{dd}, J=$ $4.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclpropane), $2.11\left(\mathrm{dd}, J=5.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right), 3.94(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 3.98\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 7.19-7.50\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 11.71(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.2,24.5,26.6,38.9,66.2,121.2,127.5,127.6,129.4,129.6$, $131.3,131.7,133.0,133.2,135.4,135.5,141.6,177.8$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{BrO}_{3} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 509.1142$, found: 509.1157.

20. Typical procedure of amidation of 22 b with 1-adamantanamine sulfate. ${ }^{58}$

To a solution of $143 \mathrm{mg}(0.31 \mathrm{mmol})$ of ($2 S, 3 R$)-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-(4methoxyphenyl)butanoic acid 22b in 6 mL of acetone were added dropwise at $0^{\circ} \mathrm{C} 32 \mu \mathrm{~L}(0.34 \mathrm{mmol}$, 1.1 equiv) of ethyl chloroformate and $47 \mu \mathrm{~L}(0.34 \mathrm{mmol}, 1.1$ equiv) of triethylamine. After stirring at $0^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 68 \mathrm{mg}$ ($0.34 \mathrm{mmol}, 1.1$ equiv) of 1 -adamantanamine sulfate and $0.68 \mathrm{~mL}(0.58 \mathrm{mmol}$, 2.0 equiv) of 1.0 M aq. NaOH solution were added at $0^{\circ} \mathrm{C}$ to the colorless suspension. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h , diluted with 30 mL of EtOAc, washed with 5 mL of brine, and dried over anhydrous MgSO_{4}. The residue was chromatographed on silica gel with a $6: 1$ mixture of hexane and EtOAc to afford 150 mg (84% yield) of ($2 S, 3 R$)- N-adamant-1-yl-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-(4-methoxyphenyl)butanamide 23b.

20.1. (2S,3R)-N-Adamant-1-yl-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-(4-methoxyphenyl) butanamide 23b

Colorless solid; 36% ee derived from 20b; mp: 147-149 ${ }^{\circ} \mathrm{C} ;[\alpha]^{19}{ }_{\mathrm{D}}=+24.2\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.93\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.09\left(\mathrm{dd}, J=4.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.39\left(\mathrm{dd}, J=4.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), $1.64-1.68\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 1.77 (dd, $J=5.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 2.01-2.07\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane, $\mathrm{CH} \times 3$ of adamantane), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.85\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.02\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 5.49(\mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}$), $6.83,7.18-7.21,7.25-7.38,7.48-7.50\left(\mathrm{~d}, \mathrm{~m}, \mathrm{~m}, \mathrm{~m}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, 8 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.2,19.2,26.9,28.6,29.5,36.1,36.4,41.8,52.1,55.4,66.1$, $113.4,127.3,127.4,129.2,129.3,131.1,133.5,133.8,135.6,135.6,135.9,158.5,169.2$; HRMS (ESITOF): Calcd for $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 616.3217$, found: 616.3202 .

20.2. (2S,3R)-N-Adamant-1-yl-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-(4-methylphenyl)

 butanamide 23cColorless sticky oil; 65% ee derived from 20c; $[\alpha]^{22} \mathrm{D}=+37.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.93\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.10\left(\mathrm{dd}, J=4.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.41(\mathrm{dd}, J=$ $4.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.64-1.68\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 1.79 (dd, $J=5.7$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 2.01-2.08\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane, $\mathrm{CH} \times 3$ of adamantane), $2.38(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.87\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.04\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 5.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, 7.10-7.12, 7.16-7.20, 7.23-7.38, 7.46-7.49 (m, m, m, m, 2H, 2H, $8 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 16.2,19.2,21.1,26.9,28.4,29.5,36.3,36.4,41.8,52.1,66.1,127.3,127.4$, 128.7, 129.2, 129.3, 130.0, 133.5, 133.8, 135.6, 135.6, 136.3, 140.6, 169.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 578.3449$, found: 578.3462.

20.3. (2S,3R)-N-Adamant-1-yl-4-(tert-butyldiphenylsiloxy)-3-(4-chlorophenyl)-2,3-methano butanamide 23d

Colorless solid; 66\% ee from 20d; mp: 88-89 ${ }^{\circ} \mathrm{C} ;[\alpha]^{17} \mathrm{D}=+57.6\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.94\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.09\left(\mathrm{dd}, J=4.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane$), 1.43$ (dd, J $=4.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\text {в }}$ of cyclopropane $), 1.64-1.68\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane $), 1.76(\mathrm{dd}, J=5.7$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 2.01-2.08\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane, $\mathrm{CH} \times 3$ of adamantane), $3.86(\mathrm{~d}, J=$ $\left.10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.05\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 5.49(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.19-7.39,7.45-7.48$ (m, m, 12H, 2H, $\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.2,19.2,26.9,28.3,29.5,36.2$, $36.4,41.8,52.2,65.7,127.4,127.5,128.1,129.4,129.4,131.4,132.5,133.3,133.5,135.5,135.5$, 142.1, 168.8; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{ClNO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 620.2722$, found: 620.2724.

20.4. (2S,3R)-N-Adamant-1-yl-3-(4-bromophenyl)-4-(tert-butyldiphenylsiloxy)-2,3-methano butanamide 23e

Colorless solid; 73\% ee derived from 20e; mp: 79-81 ${ }^{\circ} \mathrm{C} ;[\alpha]^{19}{ }_{\mathrm{D}}=+66.7\left(c 1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.94\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.08\left(\mathrm{dd}, J=4.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.43\left(\mathrm{dd}, J=4.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), $1.64-1.70\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 1.75 (dd, $J=5.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}), 2.02-2.08\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane, $\mathrm{CH} \times 3$ of adamantane), $3.85\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{OSi}\right), 4.06\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{OSi}\right), 5.49(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.18-7.48$ $\left(\mathrm{m}, 14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.1,19.2,26.9,28.2,29.5,36.3,36.4,41.8$, $52.2,65.7,120.6,127.4,127.5,129.4,129.4,131.1,131.8,133.3,133.5,135.5,135.5,142.6,168.8$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{BrNO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 642.2397$, found: 642.2396.

20.5. (2S,3R)-4-(tert-Butyldiphenylsiloxy)-N-(3,5-dimethyladamant-1-yl)-2,3-methano-3-phenyl butanamide 27

Colorless solid; 72\% ee from 20a; mp: 116-118 ${ }^{\circ} \mathrm{C} ;[\alpha]^{21}{ }_{\mathrm{D}}=+39.5\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.10-1.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of adamantane, CH_{A} of cyclopropane), 1.26-1.38 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \times 2$ of adamantane), 1.41-1.43 (m, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), 1.63-1.76 (m, 4H, $\mathrm{CH}_{2} \times 2$ of adamantane), $1.80-1.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of adamantane, CH of adamantane), 2.11-2.14 (m, 1H, CHCO), $3.89\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OSi}\right), 4.04(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OSi}$), 5.56 (br, $1 \mathrm{H}, \mathrm{NH}$), 7.15-7.23, 7.27-7.38, 7.48-7.50 (m, m, m, 4H, $9 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 16.0,19.2,26.9,28.2,30.1,30.2,32.4,36.9,40.4,42.7,42.7,47.6$, $47.8,50.6,53.7,66.0,126.8,127.3,127.5,128.1,129.2,129.3,130.2,133.4,133.7,135.6,143.6$, 169.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{NO}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 614.3425 , found: 614.3445 .

21. Typical procedure for desilylation of 23a with TBAF.

To a solution of $275 \mathrm{mg}(0.49 \mathrm{mmol})$ of ($2 \mathrm{~S}, 3 R$)- N -adamant-1-yl-4-(tert-butyldiphenylsiloxy)-2,3-methano-3-phenylbutanamide 23a in 5 mL of THF was added at $\mathrm{rt} 980 \mu \mathrm{~L}$ ($0.98 \mathrm{mmol}, 2.0$ equiv) of a 1.0M TBAF solution in THF. After stirring at rt for 3 h , the colorless solution was diluted with 30 mL of EtOAc , washed with 5 mL of half brine, 5 mL of brine, and dried over anhydrous MgSO_{4}. The
residue was chromatographed on silica gel with a 2:1 mixture of hexane and EtOAc to afford 147 mg (93\% yield) of ($2 S, 3 R$)- N-adamant-1-yl-4-hydroxy-2,3-methano-3-phenylbutanamide 24a.

21.1. (2S,3R)-N-Adamant-1-yl-4-hydroxy-2,3-methano-3-phenylbutanamide 24a

Colorless solid; 82% ee; mp $74-75^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+73.7\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.31-1.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.67-1.72 (m, $8 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane, $\mathrm{CH}_{2} \times 3$ of adamantine, CHCO), 2.02-2.05 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 2.07-2.12 (m, $3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), 3.76-3.85 (m, 2H, $\left.\mathrm{CH}_{A} \mathrm{OH}, \mathrm{OH}\right), 4.16\left(\mathrm{dd}, J=6.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 5.55(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{NH}), 7.21-7.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.7,29.4,29.5,36.3,36.8,41.6,52.5$, $65.5,126.9,128.3,128.5,143.3,171.5$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 348.1934, found: 348.1950; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$) T_{r} (major) $12.8 \mathrm{~min}, T_{\mathrm{r}}($ minor $) 21.2 \min ($ er 91:9).

21.2. (2S,3R)-N-Adamant-1-yl-4-hydroxy-2,3-methano-3-(4-methoxyphenyl)butanamide 24b

Colorless solid; 34% ee; $\mathrm{mp}: 150-152{ }^{\circ} \mathrm{C} ;[\alpha]^{19}{ }_{\mathrm{D}}=+42.5\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26-1.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.63-1.66(m, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane, CHCO), 1.67$1.72\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 2.02-2.06 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 2.06-2.13 (m, 3 H , $\mathrm{CH} \times 3$ of adamantane), $3.74-3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{OH}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.07-4.13(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{B} \mathrm{OH}$), $5.55(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.84,7.26\left(\mathrm{~d}, \mathrm{~d}, J=8.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 16.7,29.4,29.5,36.2,36.3,41.6,52.5,55.3,65.7,113.9,129.5,135.4,158.5,171.6$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 378.2040$, found: 378.2039; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$) T_{r} (major) $17.0 \mathrm{~min}, T_{\mathrm{r}}$ (minor) $15.4 \min$ (er 67:33).

21.3. (2S,3R)-N-Adamant-1-yl-4-hydroxy-2,3-methano-3-(4-methylphenyl)butanamide 24c

Colorless solid; 58% ee; mp: $161-163{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+70.0\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29-1.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.67-1.72 (m, $8 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane, $\mathrm{CHCO}, \mathrm{CH}_{2} \times 3$ of adamantane), $2.02-2.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), $2.06-2.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{OH}\right), 4.13\left(\mathrm{dd}, J=6.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 5.55(\mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}), 7.12,7.22\left(\mathrm{~d}, \mathrm{~d}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.7,21.0$, $29.4,29.5,36.3,36.5,41.6,52.5,65.5,128.2,129.2,136.6,140.3,171.5$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 362.2091$, found: 362.2091; The enantiomeric ratio was determined by HPLC $\left(\right.$ Chiralcel OD: hexane $/ 2-$ propanol $=95 / 5$) T_{r} (major) $10.7 \mathrm{~min}, T_{\mathrm{r}}$ (minor) $9.3 \mathrm{~min}(\mathrm{er} 79: 21)$.

21.4. (2S,3R)-N-Adamant-1-yl-3-(4-chlorophenyl)-4-hydroxy-2,3-methanobutanamide 24d

Colorless solid; 73% ee; mp: 132-134 ${ }^{\circ} \mathrm{C} ;[\alpha]^{17}{ }_{\mathrm{D}}=+92.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.28-1.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane $), 1.67-1.72\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane, $\mathrm{CHCO}, \mathrm{CH}_{2} \times 3$
of adamantane), 2.01-2.05 (m, 6H, $\mathrm{CH}_{2} \times 3$ of adamantane), 2.07-2.13 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), 3.72-3.82 (m, 2H, CH $A_{A} \mathrm{OH}, \mathrm{OH}$), $4.11\left(\mathrm{dd}, J=6.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H_{B} \mathrm{OH}\right), 5.55(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.28$ (s, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.9,29.4,29.5,36.1,36.3,41.6,52.6,65.5,128.6,129.8$, 132.7, 141.8, 171.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 382.1544$, found: 382.1533; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol=95/5) T_{r} (major) $11.5 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 9.2 min (er 86.6:13.4).

21.5. (2S,3R)-N-Adamant-1-yl-3-(4-bromophenyl)-4-hydroxy-2,3-methanobutanamide 24 e

Colorless solid; 73% ee; mp: $159-161^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=+98.5\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.27-1.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.64-1.69 (m, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane, CHCO), 1.67$1.72\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 2.01-2.07 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 2.05-2.13 (m, 3 H , $\mathrm{CH} \times 3$ of adamantane), $3.71-3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{OH}\right), 4.11\left(\mathrm{dd}, J=5.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right)$, 5.55 (br, $1 \mathrm{H}, \mathrm{NH}$), $7.22,7.43$ (d, d, $\left.J=8.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 16.9, 29.4, 36.1, 36.3, 41.6, 52.6, 65.5, 120.8, 130.1, 131.6, 142.3, 171.1; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 426.1039$, found: 426.1034; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$) $T_{\mathrm{r}}($ major $) 13.7 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 10.2 min (er 86.6:13.4).

21.6. (2S,3R)-N-(3,5-Dimethyladamant-1-yl)-4-hydroxy-2,3-methano-3-phenylbutanamide 28

Colorless oil; 72% ee; $[\alpha]^{25}{ }_{\mathrm{D}}=+85.3\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{CH}_{3} \times 2$), 1.13-1.22 (m, 2H, CH of adamantane, CH_{A} of cyclopropane), 1.29-1.41 (m,5H, $\mathrm{CH}_{2} \times 2$ of adamantane, CH_{B} of cyclopropane), 1,66-1.71 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 1.83-1.90 (m, 2 H , CH_{2} of adamantane), 2.15-2.18 (m, $1 \mathrm{H}, \mathrm{CHCO}$), 3.76-3.85 (m, $2 \mathrm{H}, \mathrm{CH}_{A} \mathrm{OH}, \mathrm{OH}$), 4.15 (dd, $J=6.4$, $\left.11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{B} \mathrm{OH}\right), 5.60(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.21-7.26,7.29-7.35\left(\mathrm{~m}, \mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 16.7,29.4,30.1,30.1,32.4,36.9,40.2,42.6,47.5,47.6,50.5,54.2,65.5,126.9,128.4$, 128.5, 143.2, 171.6; HRMS (ESI-TOF): $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 376.2247$, found: 376.2247; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol $=95 / 5$) T_{r} (major) 10.1 \min , T_{r} (minor) $12.7 \min (\operatorname{er} 86: 14)$.

22. Typical procedure of reduction of 24a.

A solution of 128 mg ($0.39 \mathrm{mmol}, 1.0$ equiv) of ($2 S, 3 R$)- N-adamant-1-yl-4-hydroxy-2,3-methano-3-phenylbutanamide 24a in 2 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $0^{\circ} \mathrm{C}$ under an argon atmosphere to a suspension of 74 mg ($1.95 \mathrm{mmol}, 5.0$ equiv) of LiAlH_{4} in 5 mL of anhydrous toluene. After stirring at $70^{\circ} \mathrm{C}$ for 24 h and at $100^{\circ} \mathrm{C}$ for 3 h , the colorless suspension was treated with $246 \mathrm{mg}(5.85 \mathrm{mmol}$, 15 equiv) of NaF , diluted at $0^{\circ} \mathrm{C}$ with 15 mL of EtOAc, quenched at $0^{\circ} \mathrm{C}$ with $140 \mu \mathrm{~L}(7.80 \mathrm{mmol}, 20$ equiv) of water, and filtered through Celite. The filtrate was evaporated and the residue was chromatographed on silica gel with a 9:1:0.2 mixture of hexane, EtOAc, and triethylamine to afford
$105 \mathrm{mg}(87 \%$ yield $)$ of (2R,3S)-4-(adamant-1-ylamino)-2,3-methano-2-phenylbutan-1-ol 25a.

22.1. (2R,3S)-4-(Adamant-1-ylamino)-2,3-methano-2-phenylbutan-1-ol 25a ${ }^{58}$

Colorless solid; 86% ee; mp: 89-90 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+16.6$ (c $1.00, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.77$ (dd, $J=5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), $1.14\left(\mathrm{dd}, J=5.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), 1.27-1.34 (m, 2H, CHCH2NH), 1.60-1.74 (m, 13H, $\mathrm{CH}_{2} \times 6$ of adamantane, OH), 2.05$2.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \times 3\right.$ of adamantane), $2.28\left(\mathrm{dd}, J=11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 3.39(\mathrm{dd}, J=5.0,11.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.51\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.15\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 7.17-7.21,7.27-$ 7.33, 7.37-7.39 (m, m, m, 1H, 2H, 2H, C6 H_{5}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.5,25.3,29.5,31.9$, 36.6, 40.8, 42.4, 50.7, 67.6, 126.0, 128.1, 128.2, 145.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}$ $(\mathrm{M}+\mathrm{H})^{+}: 312.2327$, found: 312.2304 ; IR ($\mathrm{NaCl}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3269, 2906, 2846; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol/Et ${ }_{2} \mathrm{NH}=95 / 5 / 0.05$) T_{r} (major) 12.0 min , T_{r} (minor) $7.5 \min ($ er $93: 7)$.

22.2. (2R,3S)-4-(Adamant-1-ylamino)-2,3-methano-2-(4-methoxyphenyl)butan-1-ol 25b

Reaction conditions: at $70{ }^{\circ} \mathrm{C}$ for 19 h ; Colorless solid; 34% ee; mp: $88-91{ }^{\circ} \mathrm{C} ;[\alpha]^{17}{ }_{\mathrm{D}}=+5.78(c 0.99$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.72$ (dd, $J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), 1.08 (dd, $J=5.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.22-1.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 1.60-1.74(\mathrm{~m}, 14 \mathrm{H}$, $\mathrm{CH}_{2} \times 6$ of adamantane, OH, NH), 2.03-2.06 (m, $3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), $2.25(\mathrm{dd}, J=11.8,11.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 3.37\left(\mathrm{dd}, J=6.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.48\left(\mathrm{~d}, J=11.9,1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.06\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 6.84,7.31\left(\mathrm{~d}, \mathrm{~d}, J=8.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.1,25.0,29.5,31.4,36.6,40.8,42.5,50.7,55.3,67.9,113.6,129.4,137.5$, 157.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 342.2428$, found: 342.2437; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 3266, 2904, 2846; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol/ $\mathrm{Et}_{2} \mathrm{NH}=95 / 5 / 0.1$) T_{r} (major) $14.8 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 11.0 min (er 67:33).

22.3. (2R,3S)-4-(Adamant-1-ylamino)-2,3-methano-2-(4-methylphenyl)butan-1-ol 25c

Reaction conditions: at $70{ }^{\circ} \mathrm{C}$ for 14 h and $100^{\circ} \mathrm{C}$ for 3 h ; Colorless solid; 60% ee; mp $128-130{ }^{\circ} \mathrm{C}$; $[\alpha]^{21}{ }_{\mathrm{D}}=+13.2\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.74\left(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.11 (dd, $J=4.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.24-1.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, 1.59-1.73 ($\mathrm{m}, 14 \mathrm{H}, \mathrm{CH}_{2} \times 6$ of adamantane, OH, NH), 2.04-2.10 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), 2.26 $\left(\mathrm{dd}, J=11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 2.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 3.38\left(\mathrm{dd}, J=5.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.49(\mathrm{~d}$, $\left.J=12.2,1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.11\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 7.11,7.28(\mathrm{~d}, \mathrm{~d}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 19.3,21.0,25.3,29.5,31.5,36.6,40.8,42.5,50.6,67.7,128.0$, 128.9, 135.5, 142.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 326.2478$, found: 326.2460; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 3267,2902,2846,2360$; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol/Et $\mathrm{t}_{2} \mathrm{NH}=95 / 5 / 0.1$) T_{r} (major) $11.5 \mathrm{~min}, T_{\mathrm{r}}$ (minor) 6.8 min (er 80:20).

22.4. (2R,3S)-4-(Adamant-1-ylamino)-2-(4-chlorophenyl)-2,3-methanobutan-1-ol 25d

Reaction conditions: at $70{ }^{\circ} \mathrm{C}$ for 12 h and $100{ }^{\circ} \mathrm{C}$ for 3 h ; Colorless solid; 75% ee; mp: $98-101{ }^{\circ} \mathrm{C}$; $[\alpha]^{17}{ }_{\mathrm{D}}=+18.4\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.78\left(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), 1.12 (dd, $J=4.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.23-1.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, 1.56-1.73 ($\mathrm{m}, 14 \mathrm{H}, \mathrm{CH}_{2} \times 6$ of adamantane, OH, NH), 2.04-2.10 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), 2.26 $\left(\mathrm{dd}, J=11.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 3.39\left(\mathrm{dd}, J=7.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.49(\mathrm{~d}, J=12.5,1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.08\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 7.25,7.31\left(\mathrm{~d}, \mathrm{~d}, J=8.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.4,25.5,29.5,31.4,36.6,40.7,42.4,50.7,67.4,128.2,129.5,131.7,143.8$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{CINO}(\mathrm{M}+\mathrm{H})^{+}: 346.1932$, found: 346.1926; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max } / \mathrm{cm}^{-1}\right)$: 3267, 2906, 2848, 2360; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2propanol $/ \mathrm{Et}_{2} \mathrm{NH}=95 / 5 / 0.1$) T_{r} (major) $7.9 \mathrm{~min}, T_{\mathrm{r}}($ minor $) 6.3 \mathrm{~min}($ er 87.6:12.4).

22.5. (2R,3S)-4-(Adamant-1-ylamino)-2-(4-bromophenyl)-2,3-methanobutan-1-ol 25e

Reaction conditions: at $70{ }^{\circ} \mathrm{C}$ for 12 h and $100^{\circ} \mathrm{C}$ for 3 h ; Colorless solid; 76% ee; mp: $114-117{ }^{\circ} \mathrm{C}$; $[\alpha]^{22}{ }_{\mathrm{D}}=+19.4\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.78\left(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.12\left(\mathrm{dd}, J=4.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of cyclopropane), $1.22-1.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, 1.59-1.73 ($\mathrm{m}, 14 \mathrm{H}, \mathrm{CH}_{2} \times 6$ of adamantane, OH, NH), 2.05-2.11 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), 2.26 $\left(\mathrm{dd}, J=11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 3.38\left(\mathrm{dd}, J=6.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.48(\mathrm{~d}, J=12.4,1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.08\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 7.26,7.41\left(\mathrm{~d}, \mathrm{~d}, J=8.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.4,25.6,29.5,31.4,36.6,40.7,42.4,50.7,67.3,119.8,129.9,131.2,144.3$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrNO}(\mathrm{M}+\mathrm{H})^{+}: 390.1427$, found: 390.1417 ; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)$: 3269, 2902, 2846; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2propanol $/ \mathrm{Et}_{2} \mathrm{NH}=95 / 5 / 0.1$) T_{r} (major) $8.0 \mathrm{~min}, T_{\mathrm{r}}$ (minor) $6.8 \mathrm{~min}($ er $88: 12)$.

22.6. (2R,3S)-4-[(3,5-Dimethyladamant-1-yl)amino]-2,3-methano-2-phenylbutan-1-ol 29

Colorless oil; 74% ee; $[\alpha]^{19}{ }_{\mathrm{D}}=+13.8\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.77(\mathrm{dd}, J=$ $5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), $0.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right.$ of adamantane $), 1.12-1.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of adamantane, CH_{B} of cyclopropane $)$, 1.23-1.38 $\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{CH}_{2} \times 5\right.$ of adamantane $)$, 1.45-1.48 $(\mathrm{m}, 1 \mathrm{H}$, CH of adamantane), 1.56-1.59 (m, 2H, OH, NH), 2.13-2.16 (m, 1H, CHCH2N), $2.27(\mathrm{t}, J=11.6,11.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 3.39\left(\mathrm{dd}, J=6.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.50\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.14(\mathrm{~d}, J$ $\left.=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 7.17-7.21,7.27-7.32,7.36-7.39\left(\mathrm{~m}, \mathrm{~m}, \mathrm{~m}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.4,25.4,30.2,31.8,32.4,41.0,41.1,42.9,48.5,48.7,50.9,52.5,67.6,125.9,128.1$, 128.2, 145.2; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 340.2635$, found: 340.2650 ; IR $(\mathrm{NaCl}$, $v_{\max } / \mathrm{cm}^{-1}$): 3263, 2900, 2843, 1600; The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane $/ 2-$ propanol $/ \mathrm{Et}_{2} \mathrm{NH}=95 / 5 / 0.1$) T_{r} (major) $10.0 \mathrm{~min}, T_{\mathrm{r}}$ (minor) $7.7 \mathrm{~min}(\mathrm{er} 87: 13)$.

23. Typical procedure for methylation of 25b. ${ }^{58}$

To a colorless solution of $25 \mathrm{mg}(0.073 \mathrm{mmol})$ of ($2 R, 3 S$)-4-(adamant-1-ylamino)-2,3-methano-2-(4-methoxyphenyl)butan-1-ol 25b and $9 \mathrm{mg}\left(0.11 \mathrm{mmol}, 1.5\right.$ equiv) of NaHCO_{3} in 2 mL of anhydrous DMF was added at rt $9 \mu \mathrm{~L}\left(0.14 \mathrm{mmol}, 2.0\right.$ equiv) of MeI. After stirring at $80^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was diluted with 20 mL of a 3:1 mixture of EtOAc and hexane, washed with 10 mL of water and 5 mL of half brine, and dried over anhydrous MgSO_{4}. The crude product was chromatographed on silica gel with a 9:1:0.1 mixture of hexane, EtOAc, and triethylamine to afford 15 mg (58% yield) of $\quad(+)-(2 R, 3 S)-4-(N$-adamant-1-yl- N-methylamino)-2,3-methano-2-(4-methoxyphenyl)butan-1-ol 26b.

23.1. (+)-(2R,3S)-4-(N-Adamant-1-yl- N-methylamino)-2,3-methano-2-(4-methoxyphenyl)butan-

 1-ol 26bColorless oil; 34% ee derived from 25b; $[\alpha]^{22}{ }_{\mathrm{D}}=+13.3\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.72$ (dd, $J=4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), 1.17 (dd, $J=3.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), 1.35-1.41 (m, 1H, CHCH2N), 1.60-1.68 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 1.72-1.75 (m, $J=2.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), $2.07-2.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \times 3\right.$ of adamantane), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right)$, $2.63\left(\mathrm{dd}, J=10.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 2.79\left(\mathrm{dd}, J=7.1,12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.39(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.04\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 6.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 6.84,7.35(\mathrm{~d}$, d, $J=8.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.4,23.7,29.6,31.8,32.2,36.7$, $37.9,48.8,54.8,55.3,67.7,113.6,129.1,137.7,157.9$; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 356.2584$, found: 356.2571 ; IR ($\mathrm{NaCl}, v_{\max } / \mathrm{cm}^{-1}$): 2906, 2848, 2360, 2332.

23.2. (+)-(2R,3S)-4-(N-Adamant-1-yl- N-methylamino)-2,3-methano-2-(4-methylphenyl)butan-1-ol 26c

Colorless solid; 60% ee derived from 25c; mp: $81-83{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}=+30.7\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.73$ (dd, $J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), $1.20(\mathrm{dd}, J=4.4,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), 1.37-1.42 (m, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), 1.59-1.68 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 1.73-1.77 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 2.07-2.12 (m, $3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), $2.31(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.65\left(\mathrm{dd}, J=12.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 2.80(\mathrm{dd}, J=7.1,12.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.40\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.08\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 6.68(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH})$, $7.11,7.32\left(\mathrm{~d}, \mathrm{~d}, J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.6,21.0,23.9,29.6$, 32.0, 32.2, 36.7, 37.9, 48.8, 54.7, 67.5, 127.8, 128.9, 135.4, 142.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 340.2635$, found: 340.2614; IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 2902,2846$.

23.3. $(+)-(2 R, 3 S)-4-(N$-Adamant-1-yl- N-methylamino)-2-(4-chlorophenyl)-2,3-methanobutan-1ol 26d

Colorless solid; 75% ee derived from 25d; mp: 100-102 ${ }^{\circ} \mathrm{C} ;[\alpha]^{17}{ }_{\mathrm{D}}=+30.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.78\left(\mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $1.21(\mathrm{dd}, J=5.0,8.5 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.35-1.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 1.59-1.65\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 1.70-1.78 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), 2.07-2.12 (m, $3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), $2.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 2.65\left(\mathrm{dd}, J=12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 2.80\left(\mathrm{dd}, J=6.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.40(\mathrm{~d}, J=$ $12.2,1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}$), $4.07\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 6.75(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 7.25,7.35(\mathrm{~d}, \mathrm{~d}, J=8.7,8.7$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8,24.4,29.5,31.8,32.2,36.7,37.9,48.7,54.8$, 67.1, 128.2, 129.2, 131.6, 143.9; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{CINO}(\mathrm{M}+\mathrm{H})^{+}: 360.2089$, found: 360.2099; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 2910, 2848.

23.4. (+)-(2R,3S)-4-(N-Adamant-1-yl- N-methylamino)-2-(4-bromophenyl)-2,3-methanobutan-1ol 26e

Colorless solid; 76\% ee derived from 25e; mp: 108-111 ${ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}=+34.4\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.78$ (dd, $J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of cyclopropane), 1.21 (dd, $J=4.4,8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of cyclopropane), $1.33-1.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 1.59-1.68\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right.$ of adamantane), 1.70-1.77 (m, $J=2.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3$ of adamantane), $2.07-2.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \times 3$ of adamantane), 2.33 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}$), $2.65\left(\mathrm{dd}, J=10.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right.$), $2.80\left(\mathrm{dd}, J=7.1,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.39$ $\left(\mathrm{d}, J=12.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right), 4.07\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 6.76(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 7.29,7.40(\mathrm{~d}, \mathrm{~d}, J=$ 8.6, 8.6 Hz, 2H, 2H, $\mathrm{C}_{6} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8,24.4,29.5,31.8,32.2,36.7,37.9$, 48.7, 54.8, 67.1, 119.7, 129.5, 131.2, 144.4; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BrNO}(\mathrm{M}+\mathrm{H})^{+}$: 404.1584, found: 404.1582; IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 2904, 2846.

23.5. $(+)-(2 R, 3 S)-4-[N-(3,5-D i m e t h y l a d a m a n t-1-y l)-N$-methylamino]-2,3-methano-2-phenyl butan-1-ol 30

Colorless oil; 74\% ee derived from 29; $[\alpha]{ }^{17}{ }_{\mathrm{D}}=+25.7\left(c 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.77\left(\mathrm{dd}, J=5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of cyclopropane), $0.83-0.87\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right.$-adamantane $), 1.08$ $1.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of adamantane), $1.22-1.45\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{2} \times 5\right.$ of adamantane, CH_{B} of cyclopropane), 1.57-1.62 (m, 1H, CH of adamantane), 2.15-2.19 (m, 1H, CHCH 2 N), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.66(\mathrm{dd}, J$ $\left.=10.6,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{N}\right), 2.81\left(\mathrm{dd}, J=7.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.41\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{O}\right)$, $4.13\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}} \mathrm{O}\right), 6.80(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 7.17-7.21,7.27-7.31,7.40-7.43(\mathrm{~m}, \mathrm{~m}, \mathrm{~m}, 1 \mathrm{H}$, $2 \mathrm{H}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 20.8,24.2,30.2,30.5,32.2,32.4,32.4,32.5,36.3$, 43.0, 44.1, 44.2, 49.1, 50.8, 56.7, 67.4, 125.9, 127.7, 128.2, 145.3; HRMS (ESI-TOF): Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 354.2791$, found: 354.2786; IR ($\mathrm{NaCl}, v_{\max } / \mathrm{cm}^{-1}$): 3201, 2950, 2360, 2341, 1604.

Acknowledgments

I would first like to express my sincere gratitude to Professor Nobuyuki Imai of the Synthetic Organic Chemistry Laboratory at Chiba Institute of Science for the continuous support of my Ph.D research and for the valuable advice in completing this thesis.

Besides my advisor, I would like to thank Associate Professor Takuya Noguchi, Assistant Professor Yuya Kawashima, and the members of Imai group for their insightful comments and examination of this thesis.

References

1. (a) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998-2007; (b) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1997, 99, 5946-5952.
2. (a) Noyori, R. "Asymmetric Catalysis In Organic Synthesis" Wiley-Interscience. 1994; (b) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993, 71, 1; (c) Noyori, R.; Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akuragawa, S. J. Am. Chem. Soc. 1987, 109, 5856-5858.
3. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976; (b) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263-4265.
4. Chauvin, Y. Angew. Chem. Int. Ed. 2006, 45, 3740-3747.
5. (a) Grubbs, R. H. Angew. Chem. Int. Ed. 2006, 45, 3760-3765; (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956; (c) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247-2250; (d) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. Int. Ed. 1995, 34, 2039-2041.
6. (a) Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748-3759; (b) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O’Regan, M. J. Am. Chem. Soc. 1990, 112, 38753886; (c) Feldman, J.; Murdzek, J. S.; Davis, W. M.; Schrock, R. R. Organometallics 1989, 8, 2260-2265.
7. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615-1621.
8. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395-2396.
9. For examples: (a) Chinn, A. J.; Kim, B.; Kwon, Y.; Miller, S. J. J. Am. Chem. Soc. 2017, 139, 18107-18114; (b) Hurtley, A. E.; Stone, E. A.; Metrano, A. J.; Miller, S. J. J. Org. Chem. 2017, 82, 11326-11336; (c) Grünenfelder, C. E.; Kisunzu, J. K.; Wennemers, H. Angew. Chem. Int. Ed. 2016, 55, 8571-8574; (d) Gustafson, J. L.; Lim, D.; Barrett, K. T.; Miller, S. J. Angew. Chem. Int. Ed. 2011, 50, 5125-5129; (e) Lichtor, P. A.; Miller, S. J. ACS Comb. Sci. 2011, 13, 321-326; (f) Nagano, M.; Doi, M.; Kurihara, M.; Suemune, H.; Tanaka, M. Org. Lett. 2010, 12, 3564-3566; (g) Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J. J. Am. Chem. Soc. 2006, 128, 16454-16455; (h) Krattiger, P.; Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org. Lett. 2005, 7, 1101-1103; (i) Berkessel, A.; Gasch, N.; Glaubitz, K.; Koch, C. Org. Lett. 2001, 3, 3839-3842; (j) Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629-1630.
10. (a) Miller, S. J. Acc. Chem. Res. 2004, 37, 601-610; (b) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481-2495.
11. Llobet, A. I.; Alvarez, M.; Albericio, F. Chem. Rev. 2009, 109, 2455-2504.
12. Kawashima, Y.; Ezawa, T.; Harada, T.; Noguchi, T.; Kawasaki, M.; Kirihara, M.; Imai, N. Bull.

Chem. Soc. Jpn. 2016, 89, 257-267.
13. Imai, N.; Sakamoto, K.; Maeda, M.; Kouge, K.; Yoshizane, K.; Nokami, J. Tetrahedron Lett. 1997, 38, 1423-1426.
14. (a) Noguchi, T.; Jung, S.; Imai, N. Tetrahedron Lett. 2014, 55, 394-396; (b) Jung, S.; Tsukuda, Y.; Kawashima, R.; Ishiki, T.; Matsumoto, A.; Nakaniwa, A.; Takagi, M.; Noguchi, T.; Imai, N. Tetrahedron Lett. 2013, 54, 5718-5720; (c) Noguchi, T.; Sekine, M.; Yokoo, Y.; Jung, S.; Imai, N. Chem. Lett. 2013, 42, 580-582; (d) Noguchi, T.; Jung, S.; Imai, N. Chem. Lett. 2012, 41, 577579; (e) Noguchi, T.; Tehara, N.; Uesugi, Y.; Jung, S.; Imai, N. Chem. Lett. 2012, 41, 42-43.
15. (a) Ishizuka, Y.; Fujimori, H.; Noguchi, T.; Kawasaki, M.; Kishida, M.; Nagai, T.; Imai, N.; Kirihara, M. Chem. Lett. 2013, 42, 1311-1313; (b) Koyata, N.; Miura, T.; Akaiwa, Y.; Sasaki, H.; Sato, R.; Nagai, T.; Fujimori, H.; Noguchi, T.; Kirihara, M.; Imai, N. Tetrahedron Asymmetry 2009, 20, 2065-2071.
16. (a) Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123, 12168-12175; (b) Kitajima, H.; Aoki, Y.; Ito, K.; Katsuki, T. Chem. Lett. 1995, 24, 1113-1114; (c) Takahashi, H.; Yoshioka, M.; Shibasaki, M.; Ohno, M.; Imai, N.; Kobayashi, S. Tetrahedron 1995, 51, 1201312026; (d) Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651-2652; (e) Ukaji, Y.; Nishimura, M.; Fujisawa, T. Chem. Lett. 1992, 21, 61-64.
17. (a) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. Tetrahedron: Asymmetry 2017, 28, 75-83; (b) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. Bull. Chem. Soc. Japan 2017, 90, 689-696; (c) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. Tetrahedron: Asymmetry 2017, 28, 1690-1699.
18. Ezawa, T.; Kawashima, Y.; Noguchi, T.; Jung, S.; Imai, N. Tetrahedron: Asymmetry 2017, 28, 266-281.
19. (a) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem. Int. Ed. 2006, 45, 1248-1252; (b) Bray, B. L. Nat. Rev. Drug Discovery 2003, 2, 587-593; (c) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243-2266; (d) Beckwith, A. L. J. In The Chemistry of Amides: Synthesis of Amides; Zabicky, J., Ed.; Wiley Interscience: New York, 1970.
20. (a) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557-6602; (b) Katritzky, A. R.; He, H. Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210-8213; (c) Ranu, B. C.; Sarkar, A.; Chakraborty, R. J. Org. Chem. 1994, 59, 4114-4116.
21. (a) El-Faham, A.; Funosas, S. R.; Prohens, R.; Albericio, F. Chem. Eur. J. 2009, 15, 9404-9416; (b) Mizuhara, T.; Hioki, K.; Yamada, M.; Sasaki, H.; Morisaki, D.; Kunishima, M. Chem. Lett. 2008, 37, 1190-1191; (c) Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S. Tetrahedron 2001, 57, 1551-1558; (d) Kuwajima, I.; Urabe, H. In Organic Syntheses; Wiley: New York, 1993; Collect. Vol. VIII, pp 486-489; (e) Chen, S. T.; Wu, S. H; Wang, K. T. Synthesis 1989, 37-38; (f) Neises, B.; Steglich, W. Angew. Chem. Int. Ed. 1978, 17, 522-524; (g) Synthetic Reagents; Pizey, J. S., Ed.; Wiley: New York, 1974; Vol. 1, pp 321-357; (h) Shioiri, T.; Ninomiya, K.;

Yamada, S. Y. J. Am. Chem. Soc. 1972, 94, 6203-6205; (i) Paul, R.; Anderson, W. J. Am. Chem. Soc. 1960, 82, 4596-4600; (j) Vaughan, J.; Osato, R. L. J. Am. Chem. Soc. 1952, 74, 676-678.
22. (a) Chu, W.; Tu, Z.; McElveen, E.; Xu, J.; Taylor, M.; Luedtke, R. R.; Mach, R. H. Bioorg. Med. Chem. 2005, 13, 77-87; (b) Chaudhary, A.; Girgis, M.; Prashad, M.; Hu, B.; Har, D.; Repic, O.; Blacklock, Y. J. Tetrahedron Lett. 2003, 44, 5543-5546; (c) Shieh, W. -C.; Carlson, J. A.; Shore, M. E. Tetrahedron Lett. 1999, 40, 7167-7170; (d) Wenger, R. M. Helv. Chim. Acta. 1983, 66, 2672-2702; (e) Meienhofer, J. in Major Methods of Peptide Bond Formation in The Peptides: Analysis, Synthesis, Biology, ed by Gross, E.; Meienhofer, J. Academic Press, New York, 1979, 1, 263-314.
23. (a) Puccetti, A.; Lunardi, C. Discovery Medicine. 2010, 9, 224-228; (b) Nussey, S.; Whitehead, S. Endocrinology: An Integrated Approach, Oxford, 2001; (c) Barrett, G. C.; Elmore, D. T. Amino Acids and Peptides: Biological roles of amino acids and peptides, Cambridge University Press, Cambridge, 1998.
24. For selected reviews on peptide syntheses: (a) Blaskovich, M. A. Handbook on Syntheses of Amino Acids: General Routes for the Syntheses of Amino Acids, Oxford University Press, New York, 2010; (b) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827-10852; (c) Gagnon, P.; Huang, X.; Therrien, E.; Keillor, J. W. Tetrahedron Lett. 2002, 43, 7717-7719, and the references cited therein.; (d) Anuradha, M. V.; Ravindranath, B. Tetrahedron 1997, 53, 11231130; (e) Wieland, T.; Bodanszky, M. The World of Peptides: A Brief History of Peptide Chemistry, Springer-Verlag, New York, 1991, 77-102. For selected reports for peptide syntheses using unprotected α-amino acids; (f) Furka, A.; Sebestyen, F.; Asgedom, M.; Dibo, G. International Journal of Peptide and Protein Research 1991, 37, 487-493; (g) Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. J. Am. Chem. Soc. 1964, 86, 1839-1842; (h) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149-2154.
25. Amblard, M.; Fehrentz, J. A.; Martinez, J.; Subra, G. Mol. Biotechnol. 2006, 33, 239-254.
26. McGaughey, G. B.; Gagne, M.; Rappe, A. K. J. Biol. Chem. 1998, 273, 15458-15463.
27. Nezhad, A. K.; Parhami A.; Radb, M. N. S.; Zarea, A. Tetrahedron Lett. 2002, 43, 2529-2533.
28. Yadav, D. K. T.; Bhanage, B. M. Synlett 2015, 26, 1862-1866.
29. (a) Moorthy, J. N.; Shinghal, N. J. Org. Chem. 2005, 70, 1926-1929; (b) Testa, E.; Fontanella, L.; Cristiani, G. F.; Mariani, L. Helv. Chim. Acta 1959, 42, 2370-2379; (c) Westfahl, J. C.; Gresham, T. L. J. Am. Chem. Soc. 1955, 77, 936-938; (d) Linke, S. Synthesis 1978, 303; (e) Hall, J.; Gisler, M. J. Org. Chem. 1976, 41, 3769-3770; (f) Goto, A.; Endo, K.; Saito, S. Angew. Chem. Int. Ed. 2008, 47, 3607-3609; (g) Sonia I. Maffioli, S. I.; Marzorati, E.; Marazzi, A. Org. Lett. 2005, 7, 5237-5239; (h) Jiang, X.; Minnaard, A. J.; Feringa, B. L.; Vries, J. G. J. Org. Chem. 2004, 69, 2327-2331.
30. (a) Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 3599-3601; (b) Park, S.; Choi, Y.; Han, H.; Yang, S. H.; Chang, S. Chem. Commun. 2003, 1936-1937; (c) Smith, M. B.;

March, J. Advanced Organic Chemistry, 5th ed.; Wiley: New York, 2001 and references cited therein; (d) Gawly, R. E. Org. React. 1988, 35, and references cited therein; (e) Field, L.; Hughmark, P. B.; Shumaker, S. H.; Marshall, W. S. J. Am. Chem. Soc. 1961, 83, 1983-1987.
31. Shimokawa, S.; Kawagoe, Y.; Moriyama, K.; Togo, H. Org. Lett. 2016, 18, 784-787.
32. Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Org. Lett. 2009, 11, 3810-3813.
33. Suresh, A. S.; Baburajan P.; Ahmed, M. Tetrahedron Lett. 2015, 56, 4864-4867.
34. Veitch, G. E.; Bridgwood, K. L.; Ley, S. V. Org. Lett. 2008, 10, 3623-3625.
35. Narendra, N.; Chennakrishnareddy, G.; Sureshbabu, V. V. Org. Biomol. Chem. 2009, 7, 35203526.
36. Giacomelli, G.; Porcheddu, A.; Salaris, M. Org. Lett. 2003, 5, 2715-2717.
37. Thalluri, K; Manne, S. R.; Dev, D.; Mandal, B. J. Org. Chem. 2014, 79, 3765-3775.
38. (a) Choi, J.; Park, G. J.; Pang, P. Y. Tetrahedron Lett. 2008, 49, 1103-1106; (b) Ho, C. Y.; Strobel, E.; Ralbovsky, J.; Galemmo, R. A., Jr. J. Org. Chem. 2005, 70, 4873-4875; (c) Sibi, M. P.; Hasegawa, H.; Ghorpade, S. R. Org. Lett. 2002, 4, 3343-3346; (d) Thouin, E.; Lubell, D. W. Tetrahedron Lett. 2000, 41, 457-460.
39. Burger, A.; Yost, W. L. J. Am. Chem. Soc. 1948, 70, 2198-2201.
40. (a) Silverman, R. Acc. Chem. Res. 1995, 28, 335-342; (b) Silverman, R. B. J. Biol. Chem. 1983, 258, 14766-14769.
41. (a) Matsuo, M. J. Synth. Org. Chem. Jpn. 1968, 26, 563-583; (b) Wallis, E. S.; Lane, J. F. Organic Reactions 1946, 3, 267-306; (c) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1881, 14, 2725-2736.
42. (a) Zhang, Q.; Shi, C.; Zhang, H. R.; Wang, K. K. J. Org. Chem. 2000, 65, 7977-7983; (b) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203-6205; (c) Smith, P. A. S. Organic Reactions 1946, 3, 337-449; (d) Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023-3033.
43. (a) Shioiri, T. Comp. Org. Syn. 1991, 6, 817-821; (b) Wolff, H. Organic Reactions 1946, 3, 307336; (b) Koldobskii, G. I.; (c) Schmidt, R. F. Ber. Dtsch. Chem. Ges. 1924, 57, 704-706.
44. (a) Yoganathan, S.; Miller, S. J. Org. Lett. 2013, 15, 602-605; (b) Dube, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett. 2009, 11, 5622-5625; (c) Anilkumar, R.; Chandrasekhar, S.; Sridhar, M. Tetrahedron Lett. 2000, 41, 5291-5293; (d) Shiori, T. Comp. Org. Syn. 1991, 6, 821-825; (e) Bauer, L.; Exner, O. Angew. Chem. Int. Ed. 1974, 13, 376-384; (f) Yale, H. L. Chem. Rev. 1943, 33, 209-256; (g) Lossen, W. Ann. 1872, 161, 347-362.
45. (a) ALS see: Mavlyutov, T. A.; Guo, L. W.; Epstein, M. L.; Ruoho, A. E. J. Phamacol. Sci. 2015, 127, 10-16; (b) Several diseases except ALS see: Maurice, T.; Su, T. P. Phamacoogy \& Therapeutics 2009, 124, 195-206 and references cited therein.
46. (a) Maurice, T.; Su, T. P. Pharmacol. Ther. 2009, 124, 195-206; (b) Quirion, R.; Bowen, W. D.; Itzhak, Y.; Junien, J. L.; Musacchio, M. J.; Rothman, R. B.; Su, T. P.; Tam, S. W.; Taylor, D. P. Trends Pharmacol. Sci. 1992, 13, 85-86.
47. (a) Hayashi, T. J. Pharmacol. Sci. 2015, 127, 2-5; (b) Omi, T.; Tanimukai, H.; Kanayama, D.; Sakagami, Y.; Tagami, S.; Okochi, M.; Moriha T.; Sato, M.; Yanagida, K.; Kitasyoji, A.; Hara, H.; Imaizumi, K.; Maurice, T.; Chevallier, N.; Marchal, S.; Takeda, M.; Kudo, T. Cell Death and Disease 2014, 5, e1332; (c) Hayashi, T.; Su, T. Cell 2007, 131, 596-610.
48. (a) Prause, J.; Goswami, A.; Katona, I.; Roos, A.; Schnizler, M.; Bushuven, E.; Dreier, A.; Buchkremer, S.; Johann, S.; Beyer, C.; Deschauer, M.; Troost, D.; Weis, J. H. Mol. Genet. 2013, 22, 1581-1600; (b) Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. Ann. Neurol. 2011, 70, 913-919.
49. Matsuno, K.; Nakazawa, M.; Okamoto, K.; Kawashima, Y.; Mita, S. Eur. J. Pharmaco. 1996, 306, 271-279.
50. (a) Banister, S. D.; Kassiou, M. Curr. Pharm. Des. 2012, 18, 884-901; (b) Niitsu, T.; Iyo, M.; Hashimoto, K. Curr. Pharm. Des. 2012, 18, 875-883; (c) Hayashi, T.; Tsai, S. Y.; Mori, T.; Fujimoto, M.; Su, T. P. Expert Opin. Ther. Targets 2011, 15, 557-577; (d) Ishikawa, M.; Hashimoto, K. J. Receptor Ligand Channel Res. 2010, 3, 25-36.
51. (a) Urfer, R.; Moebius, H. J.; Skoloudik, D.; Santamarina, E.; Sato, W.; Mita, S.; Muir, K. W. Stroke 2014, 45, 3304-3310; (b) Simona, C.; Raffaella, G.; Annamaria, M.; Andrea, B.; Sara, N.; Francesca, N.; Daniela, R. Expert Opinion on Therapeutic Patents 2013, 23, 597-613.
52. (a) Behensky, A.; Yasny, I.; Shuster, A.; Seredenin, S.; Petrov, A.; Cuevas, J. J Pharmacol Exp Ther. 2013, 347, 468-477; (b) Marrazzo, A.; Caraci, F.; Salinaro, E.; Su, T.; Copani, A.; Ronsisvalle, G. Neuroreport. 2005, 16, 1223-1226.
53. (a) Villard, V.; Espallergues, J.; Keller, E.; Alkam, T.; Nitta, A.; Yamada, K.; Nabeshima, T.; Vamvakides, A.; Maurice, T. Neuropsychopharmacology 2009, 34, 1552-1566; (b) Meunier, J.; Ieni, J.; Maurice, T. Br J Pharmacol. 2006, 149, 998-1012; (c) Maurice, T.; Su, T.; Privat, A. Neuroscience 1998, 83, 413-428;
54. (a) Froestl, W.; Muhs, A.; Preifer, A. Journal of Alzheimer's Disease 2014, 41, 961-1019; (b) Villard, V.; Espallergues, J.; Keller, E.; Vamvakides, A.; Maurice, T. J. Psychopharmacol. 2011, 25, 1101-1117.
55. Marrazzo, A.; Prezzavento, O.; Pappalardo, M. S.; Bousquet, E.; Indanza, M.; Pike, V. W.; Ronsisvalle, G. IL Farmaco 2002, 57, 45-53.
56. Kawashima, Y.; Ezawa, T.; Yamamura, M.; Harada, T.; Noguchi, T.; Miura, T.; Imai, N. Tetrahedron Lett. 2016, 57, 668-671.
57. McKennon, M. J.; Meyers, A. I.; Drauz, K.; Schwarm, M. J. Org. Chem. 1993, 58, 3568-3571.
58. Kawashima, Y. Ph.D. Thesis, Chiba Institute of Science, 2016.
59. Kawashima, Y.; Ezawa, T.; Yamamura, M.; Harada, T.; Noguchi, T.; Miura, T.; Imai, N. Tetrahedron 2015, 71, 8585-8592.
60. Charette, A. B.; Brochu, C. J. Am. Chem. Soc. 1995, 117, 11367-11368.

